Lesson Plan

Name of Faculty : Vikramaditya

Discipline : ECE Semester : 3rd

Subject : Digital Electronics

Lesson Plan Duration: 16 weeks

Work load (Lecture /Practical) per week (in hours): Lectures—03, Practical—03

		Theory		Practical
Week	Lecture Day	Topic (Including Assignment/ Test	Practical Day	Topic
1 st	1	Introduction	1 st	Verification and
	2	Distinction between analog and digital signal.		interpretation of truth tables for
	3	Applications and advantages of digital signals		AND, OR, NOT NAND, NOR and Exclusive OR (EXOR) and Exclusive NOR (EXNOR) gates
	4	Assignment		Verification and
2 nd	5 6 7	octal and hexadecimal number system conversion from decimal and hexadecimal to binary and vice-versa	2 nd	interpretation of truth tables for AND, OR, NOT NAND, NOR and Exclusive OR (EXOR) and Exclusive NOR (EXNOR) gates
3 rd	8	Binary addition and subtraction including binary points. 1's and 2's complement method of addition/subtraction.	$3^{ m rd}$	Realisation of logic functions with the help of NAND or NOR gates
	9	Assignment		
4 th	10	Concept of code, weighted and not weighted codes	4 th	To design a half
	11	examples of 8421, BCD, excess-3 and Gray code		adder using XOR and NAND gates
	12	Concept of parity, single and double parity and error detection		and verification of its operation
5 th	13	Assignment	5 th	Construction of a
	14	Concept of negative and positive logic		full adder circuit

	15	Definition, symbols and truth tables of NOT, AND, OR, NAND, NOR, EXOR Gates		using XOR and NAND gates and verify its operation
6 th	16 17	NAND and NOR as universal gates Introduction to TTL and CMOS logic	6 th	Revision of Experiments Revision of Experiments
		families		
	18 19	Assignment		
	20	Logic Simplification Postulates of Boolean algebra, De Morgan's Theorems	7 th	
	21	Implementation of Boolean (logic) equation with gates		
	22	Assignment	8 th	Verification of truth table for positive edge triggered, negative edge triggered, level triggered IC flipflops (At least one IC each of D latch, D flipflop, JK flipflops).
	23	Half adder and Full adder circuit		
8 th	24	design and implementation		
	25	Decoders, Multiplexers, Multiplexers and Encoder	9 th	Verification of truth table for positive edge triggered, negative edge triggered, level triggered IC flipflops (At least one IC each of D latch, D flip-flop, JK flipflops).
9th	26	Four bit decoder circuits for 7 segment display and decoder/driver ICs		
	27	Basic functions and block diagram of MUX and DEMUX with different ICs		
	28	Basic functions and block diagram of Encoder		Revision of Experiments
10 th	29	Assignment	10^{th}	
	30	Concept and types of latch with their working and applications		
11 th	31	Operation using waveforms and truth tables of RS, T, D, Master/Slave JK flip flops	11 th	Verification of truth table for encoder and decoder ICs, Mux and DeMux
	32	Difference between a latch and a flip flop		
	33	Introduction to Asynchronous and Synchronous counters		Trail and Deriun

12 th	34	Binary counters	12 th	To design a 4 bit SISO, SIPO, PISO, PIPO shift registers using JK/D flip flops and verification of their operation
	35	Divide by N ripple counters		
	36	Decade counter		
13 th	37	Ring counter	13 th	Revision of Experiments
	38	Assignment		
	39	Introduction and basic concepts		
		including shift left and shift right		
14 th	40	serial in serial out, parallel in serial out parallel in parallel out parallel in parallel out Universal shift register	14 th	To design a 4 bit ring counter and verify its operation.
	41	Working principle of A/D and D/A converters		
	42	Stair step Ramp A/D converter, Dual Slope A/D converter		
15 th	43	Successive Approximation A/D Converter	15 th	Use of Asynchronous Counter ICs (7490 or 7493)
	44	Binary Weighted D/A converter		
	45	R/2R ladder D/A converter, Applications of A/D and D/A converter		
16 th	46	Memory organization, classification of semiconductor memories (RAM, ROM, PROM, EPROM, and EEPROM)	16 th	Revision of Experiments
	47	static and dynamic RAM		
	48	introduction to 74181 ALU IC		