
 Programming In C

IIIrd Sem. Computer Engg. Page 1

Contents

 Introduction to Programming

 Introduction to C, structure of C programming

 Elements of C

 Variables, Statements, Expressions

 Input-Output in C

 Formatted Input-Output

 Operators

 Control Statements

Iterative statements

 Jump statements

 Function

 Function categories

 Actual arguments and Formal arguments

 Recursion

 Recursion verses Iteration

 Storage classes

 Arrays

 Two Dimensional Arrays

 Array using Function

 Strings

 Common Functions in String

 Structure in C Union

Nested Structure

 Union

 Pointers

 Pointers and Arrays

 Programming In C

IIIrd Sem. Computer Engg. Page 2

INTRODUCTION TO PROGRAMMING

A language that is acceptable to a computer system is called a computer language or

programming language and the process of creating a sequence of instructions in such a language

is called programming or coding. A program is a set of instructions, written to perform a specific

task by the computer. A set of large program is called software. To develop software, one must

have knowledge of a programming language.

Before moving on to any programming language, it is important to know about the various types

of languages used by the computer. Let us first know what the basic requirements of the

programmers were & what difficulties they faced while programming in that language.

COMPUTER LANGUAGES

Languages are a means of communication. Normally people interact with each other through a

language. On the same pattern, communication with computers is carried out through a language.

This language is understood both by the user and the machine. Just as every language like

English, Hindi has its own grammatical rules; every computer language is also bounded by rules

known as syntax of that language. The user is bound by that syntax while communicating with the

computer system.

Computer languages are broadly classified as:

 Low Level Language: The term low level highlights the fact that it is closer to a language

which the machine understands.

The low level languages are classified as:

o Machine Language: This is the language (in the form of 0‘s and 1‘s, called binary

numbers) understood directly by the computer. It is machine dependent. It is
difficult to learn and even more difficult to write programs.

o Assembly Language: This is the language where the machine codes comprising of

0‘sand 1‘s are substituted by symbolic codes (called mnemonics) to improve their

understanding. It is the first step to improve programming structure. Assembly

language programming is simpler and less time consuming than machine level

programming, it is easier to locate and correct errors in assembly language than in

machine language programs. It is also machine dependent. Programmers must

have knowledge of the machine on which the program will run.

 Programming In C

IIIrd Sem. Computer Engg. Page 3

 High Level Language: Low level language requires extensive knowledge of the hardware

since it is machine dependent. To overcome this limitation, high level language has been

evolved which uses normal English, which is easy to understand to solve any problem.

High level languages are computer independent and programming becomes quite easy and

simple. Various high level languages are given below:

o BASIC (Beginners All Purpose Symbolic Instruction Code): It is widely used,

easy to learn general purpose language. Mainly used in microcomputers in earlier
days.

o COBOL (Common Business Oriented language): A standardized language used

for commercial applications.

o FORTRAN (Formula Translation): Developed for solving mathematical and

scientific problems. One of the most popular languages among scientific
community.

o C: Structured Programming Language used for all purpose such as scientific

application, commercial application, developing games etc.

o C++: Popular object oriented programming language, used for general purpose.

PROGRAMMING LANGUAGE TRANSLATORS

As you know that high level language is machine independent and assembly language

though it is machine dependent yet mnemonics that are being used to represent

instructions are not directly understandable by the machine. Hence to make the machine

understand the instructions provided by both the languages, programming language

instructors are used. They transform the instruction prepared by programmers into a form

which can be interpreted & executed by the computer. Flowing are the various tools to

achieve this purpose:

 Compiler: The software that reads a program written in high level language and translates

it into an equivalent program in machine language is called as compiler. The program

written by the programmer in high level language is called source program and the

program generated by the compiler after translation is called as object program.

 Interpreter: it also executes instructions written in a high level language. Both complier &

interpreter have the same goal i.e. to convert high level language into binary instructions,

but their method of execution is different. The complier converts the entire source code

into machine level program, while the interpreter takes 1 statement, translates it, executes

it & then again takes the next statement.

 Assembler: The software that reads a program written in assembly language and translates

it into an equivalent program in machine language is called as assembler.

 Programming In C

IIIrd Sem. Computer Engg. Page 4

 Linker: A linker or link editor is a computer program that takes one or more object files

generated by a compiler and combines them into a single executable file, library file, or

another object file.

 Programming In C

IIIrd Sem. Computer Engg. Page 5

INTRODUCTION TO C

 Programming In C

IIIrd Sem. Computer Engg. Page 6

Brief History of C

 The C programming language is a structure oriented programming language, developed at

Bell Laboratories in 1972 by Dennis Ritchie.

 C programming language features were derived from an earlier language called ―B‖

(Basic Combined Programming Language – BCPL)

 C language was invented for implementing UNIX operating system.

 In 1978, Dennis Ritchie and Brian Kernighan published the first edition ―The C

Programming Language‖ and is commonly known as K&R C.

 In 1983, the American National Standards Institute (ANSI) established a committee to

provide a modern, comprehensive definition of C. The resulting definition, the ANSI

standard, or ―ANSI C‖, was completed late 1988.

 Many of C‘s ideas & principles were derived from the earlier language B, thereby naming

this new language ―C‖.

WHY IS C POPULAR

 It is reliable, simple and easy to use.

 C is a small, block-structured programming language.

 C is a portable language, which means that C programs written on one system can be run

on other systems with little or no modification.

 C has one of the largest assortments of operators, such as those used for calculations and

data comparisons.

 Although the programmer has more freedom with data storage, the languages do not

check data type accuracy for the programmer.

WHY TO STUDY C

 By the early 1980s, C was already a dominant language in the minicomputer world of

Unix systems. Since then, it has spread to personal computers (microcomputers) and to

mainframes.

 Many software houses use C as the preferred language for producing word processing

programs, spreadsheets, compilers, and other products.

 C is an extremely flexible language—particularly if it is to be used to write operating

systems.

 Unlike most other languages that have only four or five levels of precedence, C has 15.

 Programming In C

IIIrd Sem. Computer Engg. Page 7

CHARECTERESTICS OF A C PROGRAM

 Middle level language.

High Level Middle Level Low Level

High level languages

provide almost everything

that the programmer might

need to do as already built

into the language

Middle level languages don‘t

provide all the built-in functions

found in high level languages,

but provides all building blocks

that we need to produce the result

we want

Low level languages

provides nothing

other than access to

the machines basic

instruction set

Examples:

Java, Python

C, C++ Assembler

 Small size – has only 32 keywords

 Extensive use of function calls- enables the end user to add their own functions to the C

library.

 Supports loose typing – a character can be treated as an integer & vice versa.

 Structured language

 Programming In C

IIIrd Sem. Computer Engg. Page 8

Structure oriented Object oriented Non structure

In this type of language, large

programs are divided into small

programs called functions

In this type of language,

programs are divided into

objects

There is no specific

structure for programming

this language

Prime focus is on functions and

procedures that operate on the

data

Prime focus is in the data that is

being operated and not on the

functions or procedures

N/A

Data moves freely around the

systems from one function to

another

Data is hidden and cannot be

accessed by external functions

N/A

Program structure follows ―Top

Down Approach‖

Program structure follows

―Bottom UP Approach‖

N/A

Examples:
C, Pascal, ALGOL and Modula-2

C++, JAVA and C# (C sharp) BASIC, COBOL,

FORTRAN

 Low level (Bit Wise) programming readily available

 Pointer implementation - extensive use of pointers for memory, array, structures and

functions.

 It has high-level constructs.

 It can handle low-level activities.

 It produces efficient programs.

 It can be compiled on a variety of computers.

USES

The C programming language is used for developing system applications that forms a major

portion of operating systems such as Windows, UNIX and Linux. Below are some examples of C

being used:

 Database systems

 Graphics packages

 Word processors

 Spreadsheets

 Operating system development

 Compilers and Assemblers

 Network drivers

 Interpreters

 Programming In C

IIIrd Sem. Computer Engg. Page 9

STRUCTURE OF A C PROGRAM

The structure of a C program is a protocol (rules) to the programmer, which he has to follow

while writing a C program. The general basic structure of C program is shown in the figure

below.

Based on this structure, we can sketch a C program.

Example:

/* This program accepts a number & displays it to the user*/

#include <stdio.h>

void main(void)

{ int number;

printf("Please enter a number: ");

scanf("%d", &number);

printf("You entered %d", number);

return 0;}

 Programming In C

IIIrd Sem. Computer Engg. Page 10

Stepwise explanation:

#include

 The part of the compiler which actually gets your program from the source file is called

the preprocessor.

 #include <stdio.h>

 #include is a pre-processor directive. It is not really part of our program, but instead it is

an instruction to the compiler to make it do something. It tells the C compiler to include

the contents of a file (in this case the system file called stdio.h).

 The compiler knows it is a system file, and therefore must be looked for in a special place,

by the fact that the filename is enclosed in <> characters

<stdio.h>

 stdio.h is the name of the standard library definition file for all STanDard Input and

Output functions.

 Your program will almost certainly want to send information to the screen and read things

from the keyboard, and stdio.h is the name of the file in which the functions that we want

to use are defined.

 The function we want to use is called printf. The actual code of printf will be tied in later

by the linker.

 The ".h" portion of the filename is the language extension, which denotes an include file.

void

 This literally means that this means nothing. In this case, it is referring to the function

whose name follows.

 Void tells to C compiler that a given entity has no meaning, and produces no error.

main

 In this particular example, the only function in the program is called main.

 A C program is typically made up of large number of functions. Each of these is given a

name by the programmer and they refer to each other as the program runs.

 C regards the name main as a special case and will run this function first i.e. the program

execution starts from main.

(void)

 This is a pair of brackets enclosing the keyword void.

 It tells the compiler that the function main has no parameters.

 A parameter to a function gives the function something to work on.

 Programming In C

IIIrd Sem. Computer Engg. Page 11

{ (Brace)

 This is a brace (or curly bracket). As the name implies, braces come in packs of two - for

every open brace there must be a matching close one.

 Braces allow us to group pieces of program together, often called a block.

 A block can contain the declaration of variable used within it, followed by a sequence of

program statements.

 In this case the braces enclose the working parts of the function main.

; (semicolon)

 The semicolon marks the end of the list of variable names, and also the end of that

declaration statement.

 All statements in C programs are separated by ";" (semicolon) characters.

 The ";" character is actually very important. It tells the compiler where a given statement

ends.

 If the compiler does not find one of these characters where it expects to see one, then it

will produce an error.

scanf

 In other programming languages, the printing and reading functions are a part of the

language.

 In C this is not the case; instead they are defined as standard functions which are part of

the language specification, but are not a part of the language itself.

 The standard input/output library contains a number of functions for formatted data

transfer; the two we are going to use are scanf (scan formatted) and printf (print

formatted).

printf

 The printf function is the opposite of scanf.

 It takes text and values from within the program and sends it out onto the screen.

 Just like scanf, it is common to all versions of C and just like scanf, it is described in the

system file stdio.h.

 The first parameter to a printf is the format string, which contains text, value descriptions

and formatting instructions.

 Programming In C

IIIrd Sem. Computer Engg. Page 12

FILES USED IN A C PROGRAM

 Source File- This file contains the source code of the program. The file extension of any c

file is .c. The file contains C source code that defines the main function & maybe other

functions.

 Header File- A header file is a file with extension .h which contains the C function

declarations and macro definitions and to be shared between several source files.

 Object File- An object file is a file containing object code, with an extension .o, meaning

relocatable format machine code that is usually not directly executable. Object files are

produced by an assembler, compiler, or other language translator, and used as input to the

linker, which in turn typically generates an executable or library by combining parts of

object files.

 Executable File- The binary executable file is generated by the linker. The linker links the

various object files to produce a binary file that can be directly executed.

COMPLIATION & EXECUTION OF A C PROGRAM

 Programming In C

IIIrd Sem. Computer Engg. Page 13

ELEMENTS OF C

Every language has some basic elements & grammatical rules. Before starting with programming,

we should be acquainted with the basic elements that build the language.

Character Set

Communicating with a computer involves speaking the language the computer understands. In C,

various characters have been given to communicate.

Character set in C consists of;

Types Character Set

Lower case a-z

Upper case A-Z

Digits 0-9

Special Character !@#$%^&*

White space Tab or new lines or space

Keywords

Keywords are the words whose meaning has already been explained to the C compiler. The

keywords cannot be used as variable names because if we do so we are trying to assign a new

meaning to the keyword, which is not allowed by the computer.

There are only 32 keywords available in C. Below figure gives a list of these keywords for your

ready reference.

 Programming In C

IIIrd Sem. Computer Engg. Page 14

Identifier

In the programming language C, an identifier is a combination of alphanumeric characters, the

first being a letter of the alphabet or an underline, and the remaining being any letter of the

alphabet, any numeric digit, or the underline.

Two rules must be kept in mind when naming identifiers.

1. The case of alphabetic characters is significant. Using "INDEX" for a variable is not the

same as using "index" and neither of them is the same as using "InDeX" for a variable. All

three refer to different variables.

2. As C is defined, up to 32 significant characters can be used and will be considered

significant by most compilers. If more than 32 are used, they will be ignored by the

compiler.

Data Type

In the C programming language, data types refer to a domain of allowed values & the operations

that can be performed on those values. The type of a variable determines how much space it

occupies in storage and how the bit pattern stored is interpreted. There are 4 fundamental data

types in C, which are- char, int, float &, double. Char is used to store any single character; int is

used to store any integer value, float is used to store any single precision floating point number &

double is used to store any double precision floating point number. We can use 2 qualifiers with

these basic types to get more types.There are 2 types of qualifiers- Sign qualifier- signed &

unsigned
Size qualifier- short & long
The data types in C can be classified as follows:

Type Storage size Value range

char 1 byte -128 to 127

unsigned char 1 byte 0 to 255

int 2 or 4 bytes -32,768 to 32,767 or -2,147,483,648 to 2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

 Programming In C

IIIrd Sem. Computer Engg. Page 15

long 4 bytes -2,147,483,648 to 2,147,483,647

unsigned long 4 bytes 0 to 4,294,967,295

Type Storage size Value range Precision

float 4 bytes 1.2E-38 to 3.4E+38 6 decimal places

double 8 bytes 2.3E-308 to 1.7E+308 15 decimal places

long double 10 bytes 3.4E-4932 to 1.1E+4932 19 decimal places

Constants

A constant is an entity that doesn‘t change whereas a variable is an entity that may change.

C constants can be divided into two major categories:

 Primary Constants

 Secondary Constants

Here our only focus is on primary constant. For constructing these different types of constants

certain rules have been laid down.

Rules for Constructing Integer Constants:

 Programming In C

IIIrd Sem. Computer Engg. Page 16

An integer constant must have at least onedigit.

a) It must not have a decimal point.
b) It can be either positive or negative.

c) If no sign precedes an integer constant it is assumed to be positive.

d) No commas or blanks are allowed within an integer constant.

e) The allowable range for integer constants is -32768to 32767.

Ex.: 426, +782,-8000, -7605

Rules for Constructing Real Constants:

Real constants are often called Floating Point constants. The real constants could be written in

two forms—Fractional form and Exponential form.

Rules for constructing real constants expressed in fractional form:

a) A real constant must have at least one digit.

b) It must have a decimal point.

c) It could be either positive or negative.

d) Default sign is positive.

e) No commas or blanks are allowed within a real constant.

Ex. +325.34, 426.0, -32.76, -48.5792

Rules for constructing real constants expressed in exponential form:

a) The mantissa part and the exponential part should be separated by a letter e.

b) The mantissa part may have a positive or negative sign.

c) Default sign of mantissa part is positive.

d) The exponent must have at least one digit, which must be a positive or negative integer.

Default sign is positive.

e) Range of real constants expressed in exponential form is -3.4e38 to 3.4e38.

Ex. +3.2e-5, 4.1e8, -0.2e+3, -3.2e-5

 Programming In C

IIIrd Sem. Computer Engg. Page 17

VARIABLES

Variables are names that are used to store values. It can take different values but one at a time. A

data type is associated with each variable & it decides what values the variable can take. When

you decide your program needs another variable, you simply declare (or define) a new variable

and C makes sure you get it. You declare all C variables at the top of whatever blocks of code

need them. Variable declaration requires that you inform C of the variable's name and data type.

Syntax – datatype variablename;

Eg:

int page_no;

char grade;

float salary;

long y;

 Declaring Variables:

There are two places where you can declare a variable:

 After the opening brace of a block of code (usually at the top of a function)

 Before a function name (such as before main() in the program) Consider various

examples:

Suppose you had to keep track of a person's first, middle, and last initials. Because an

initial is obviously a character, it would be prudent to declare three character variables

to hold the three initials. In C, you could do that with the following statement:

1. main()

{

char first, middle, last;

// Rest of program follows

}

 Programming In C

IIIrd Sem. Computer Engg. Page 18

2. main()

{ char first;

char middle;

char last;

// Rest of program follows

}

 Initialization of Variables

When a variable is declared, it contains undefined value commonly known as garbage

value. If we want we can assign some initial value to the variables during the declaration

itself. This is called initialization of the variable.

Eg- int pageno=10;

char grade=‘A‘;

float salary= 20000.50;

Expressions

An expression consists of a combination of operators, operands, variables & function calls. An

expression can be arithmetic, logical or relational. Here are some expressions:

a+b – arithmetic operation

a>b- relational operation a

== b - logical operation

func (a,b) – function call

4+21

a*(b + c/d)/20

q = 5*2 x =

++q % 3

 Programming In C

IIIrd Sem. Computer Engg. Page 19

q > 3

As you can see, the operands can be constants, variables, or combinations of the two. Some

expressions are combinations of smaller expressions, called subexpressions. For example, c/d is a

subexpression of the sixth example.

An important property of C is that every C expression has a value. To find the value, you perform

the operations in the order dictated by operator precedence.

Statements

Statements are the primary building blocks of a program. A program is a series of statements with

some necessary punctuation. A statement is a complete instruction to the computer. In C,

statements are indicated by a semicolon at the end. Therefore

legs = 4

is just an expression (which could be part of a larger expression), but

legs = 4;

is a statement.

What makes a complete instruction? First, C considers any expression to be a statement if you

append a semicolon. (These are called expression statements.) Therefore, C won't object to lines

such as the following:

8;

3 + 4;

However, these statements do nothing for your program and can't really be considered sensible

statements. More typically, statements change values and call functions:

x = 25;

++x;

y = sqrt(x);

Although a statement (or, at least, a sensible statement) is a complete instruction, not all complete

instructions are statements. Consider the following statement:

x = 6 + (y = 5);

In it, the subexpression y = 5 is a complete instruction, but it is only part of the statement.

 Programming In C

IIIrd Sem. Computer Engg. Page 20

Because a complete instruction is not necessarily a statement, a semicolon is needed to identify

instructions that truly are statements.

Compound Statements (Blocks)

A compound statement is two or more statements grouped together by enclosing them in braces;

it is also called a block. The following while statement contains an example:

while (years < 100)

{

wisdom = wisdom * 1.05;

printf("%d %d\n", years, wisdom);

years = years + 1;

}

If any variable is declared inside the block then it can be declared only at the beginning of the

block. The variables that are declared inside a block can be used only within the block.

 Programming In C

IIIrd Sem. Computer Engg. Page 21

INPUT-OUTPUT IN C

When we are saying Input that means we feed some data into program. This can be given in the

form of file or from command line. C programming language provides a set of built-in functions

to read given input and feed it to the program as per requirement.

When we are saying Output that means to display some data on screen, printer or in any file. C

programming language provides a set of built-in functions to output the data on the computer

screen.

Functions printf() and scanf() are the most commonly used to display out and take input

respectively. Let us consider an example:

#include <stdio.h> //This is needed to run printf() function.

int main()

{

printf("C Programming"); //displays the content inside quotation

return 0;

}

Output:

C Programming

Explanation:

 Every program starts from main() function.

 printf() is a library function to display output which only works if #include<stdio.h>is

included at the beginning.

 Here, stdio.h is a header file (standard input output header file) and #include is command

to paste the code from the header file when necessary. When compiler encounters

printf()function and doesn't find stdio.h header file, compiler shows error.

 return 0; indicates the successful execution of the program.

Input- Output of integers in C

#include<stdio.h>

int main()

{

int c=5;

 Programming In C

IIIrd Sem. Computer Engg. Page 22

printf("Number=%d",c);

return 0;

}

Output

Number=5

Inside quotation of printf() there, is a conversion format string "%d" (for integer). If this

conversion format string matches with remaining argument, i.e, c in this case, value of c is

displayed.

#include<stdio.h>

int main()

{ int c;

printf("Enter a number\n");

scanf("%d",&c);

printf("Number=%d",c);

return 0;

}

Output

Enter a number

4

Number=4

The scanf() function is used to take input from user. In this program, the user is asked an input

and value is stored in variable c. Note the '&' sign before c. &c denotes the address of c and value

is stored in that address.

Input- Output of floats in C

#include <stdio.h>

int main()

{

float a;

printf("Enter value: ");

scanf("%f",&a);

printf("Value=%f",a); //%f is used for floats instead of %d

return 0;

}

 Programming In C

IIIrd Sem. Computer Engg. Page 23

Output

Enter value: 23.45

Value=23.450000

Conversion format string "%f" is used for floats to take input and to display floating value of a

variable.

Input - Output of characters and ASCII code

#include <stdio.h>

int main()

{

char var1;

printf("Enter character: ");

scanf("%c",&var1);

printf("You entered %c.",var1);

return 0;

}

Output

Enter character: g

You entered g.

Conversion format string "%c" is used in case of characters.

ASCII code

When character is typed in the above program, the character itself is not recorded a numeric value

(ASCII value) is stored. And when we displayed that value by using "%c", that character is

displayed.

#include <stdio.h>

int main()

{

char var1;

printf("Enter character: ");

scanf("%c",&var1);

printf("You entered %c.\n",var1);

 Programming In C

IIIrd Sem. Computer Engg. Page 24

/* \n prints the next line(performs work of enter). */

printf("ASCII value of %d",var1);

return 0;

}

Output:

Enter character:

g

103

When, 'g' is entered, ASCII value 103 is stored instead of g.

You can display character if you know ASCII code only. This is shown by following example.

#include <stdio.h>

int main()

{

int var1=69;

printf("Character of ASCII value 69: %c",var1);

return 0;

}

Output

Character of ASCII value 69: E

The ASCII value of 'A' is 65, 'B' is 66 and so on to 'Z' is 90. Similarly ASCII value of 'a' is 97, 'b'

is 98 and so on to 'z' is 122.

 Programming In C

IIIrd Sem. Computer Engg. Page 25

FORMATTED INPUT-OUTPUT

Data can be entered & displayed in a particular format. Through format specifications,

better presentation of results can be obtained.

Variations in Output for integer & floats:

#include<stdio.h>

int main()

{

printf("Case 1:%6d\n",9876);

/* Prints the number right justified within 6 columns */

printf("Case 2:%3d\n",9876);

/* Prints the number to be right justified to 3 columns but, there are 4 digits so number is

not right justified */

printf("Case 3:%.2f\n",987.6543);

/* Prints the number rounded to two decimal places */

printf("Case 4:%.f\n",987.6543);

/* Prints the number rounded to 0 decimal place, i.e, rounded to integer */

printf("Case 5:%e\n",987.6543);

/* Prints the number in exponential notation (scientific notation) */

return 0;

}

Output

Case 1: 9876

Case 2:9876

Case 3:987.65

Case 4:988

Case 5:9.876543e+002

Variations in Input for integer and floats:

#include <stdio.h>

int main()

{

int a,b;

float c,d;

printf("Enter two intgers: ");

 Programming In C

IIIrd Sem. Computer Engg. Page 26

/*Two integers can be taken from user at once as below*/

scanf("%d%d",&a,&b);

printf("Enter intger and floating point numbers: ");

/*Integer and floating point number can be taken at once from user as below*/

scanf("%d%f",&a,&c);

return 0;

}

Similarly, any number of inputs can be taken at once from user.

EXERCISE:

1. To print out a and b given below, which of the following printf() statement will you use?

#include<stdio.h>

float a=3.14;

double b=3.14;

A. printf("%f %lf", a, b);

B. printf("%Lf %f", a, b);

C. printf("%Lf %Lf", a, b);

D. printf("%f %Lf", a, b);

2. To scan a and b given below, which of the following scanf() statement will you use?

#include<stdio.h>

float a;

double b;

A. scanf("%f %f", &a, &b);

B. scanf("%Lf %Lf", &a, &b);

C. scanf("%f %Lf", &a, &b);

D. scanf("%f %lf", &a, &b);

3. For a typical program, the input is taken using.

A. scanf

B. Files

 Programming In C

IIIrd Sem. Computer Engg. Page 27

C. Command-line

D. None of the mentioned

4. What is the output of this C code?

#include <stdio.h>

int main()

{ int i = 10, j = 2;

printf("%d\n", printf("%d %d ", i, j));

}

A. Compile time error

B. 10 2 4

C. 10 2 2

D. 10 2 5

5. What is the output of this C code?

#include <stdio.h>

int main()

{

int i = 10, j = 3;

printf("%d %d %d", i, j);

}

A. Compile time error

B. 10 3

C. 10 3 some garbage value

D. Undefined behavior

6. What is the output of this C code?

#include <stdio.h>

int main()

{ int i = 10, j = 3, k = 3;

printf("%d %d ", i, j, k);

}

 Programming In C

IIIrd Sem. Computer Engg. Page 28

A. Compile time error

B. 10 3 3

C. 10 3

D. 10 3 somegarbage value

7. The syntax to print a % using printf statement can be done

by. A. %

B. %

C. ‗%‘

D. %%

8. What is the output of this C code?

#include <stdio.h>

int main()

{ int n;

scanf("%d",

n);

printf("%d\n"

, n); return 0;

}

A. Compilation error

B. Undefined behavior

C. Whatever user types

D. Depends on the standard

9. What is the output of this C code?

#include <stdio.h>

int main()

{ short int i;

scanf("%hd",

&i);

printf("%hd",

i); return 0;

}

A. Compilation error

 Programming In C

IIIrd Sem. Computer Engg. Page 29

B. Undefined behavior

C. Whatever user types

D. None of the mentioned

10. In a call to printf() function the format specifier %b can be used to print binary equivalent
of

an

intege

r. A.

True

B. False

11. Point out the error in the program?

#include<stdio.h>

int main()

{

char ch;

int i;

scanf("%c", &i);

scanf("%d", &ch);

printf("%c %d", ch, i);

return 0;

}

A. Error: suspicious char to in conversion in scanf()

B. Error: we may not get input for second scanf() statement

C. No error

D. None of above

12. Which of the following is NOT a delimiter for an input in scanf?

A. Enter

B. Space

C. Tab

D. None of the mentioned

 Programming In C

IIIrd Sem. Computer Engg. Page 30

OPERATORS

 Programming In C

IIIrd Sem. Computer Engg. Page 31

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. C language is rich in built-in operators and provides the following types of

operators:

• Arithmetic Operators

• Relational Operators

• Logical Operators

• Bitwise Operators

• Assignment Operators

• Increment and decrement operators

• Conditional operators

• Misc Operators

Arithmetic operator:

These are used to perform mathematical calculations like addition, subtraction, multiplication,

division and modulus.

Following table shows all the arithmetic operators supported by C language. Assume variable A

holds 10 and variable B holds 20 then:

Operator

Description

Example

+ Adds two operands A + B will give 30

-

Subtracts second operand from the first

A – B will give -10

* Multiplies both operands A * B will give 200

/

Divides numerator by de-numerator

B / A will give 2

%
Modulus Operator and remainder of after an integer

division

B % A will give 0

 Programming In C

IIIrd Sem. Computer Engg. Page 32

++ Increments operator increases integer value by one A++ will give 11

--

Decrements operator decreases integer value by one

A–will give 9

Relational Operators:

These operators are used to compare the value of two variables.

Following table shows all the relational operators supported by C language. Assume variable A

holds 10 and variable B holds 20, then:

Operator Description Example

== Checks if the values of two operands are equal or not, if yes

then condition becomes true.

(A == B) is not

true.

!= Checks if the values of two operands are equal or not, if

values are not equal then condition becomes true.

(A != B) is true.

> Checks if the value of left operand is greater than the value

of right operand, if yes then condition becomes true.

(A > B) is not

true.

< Checks if the value of left operand is less than the value of

right operand, if yes then condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater than or equal to

the value of right operand, if yes then condition becomes

true.

(A >= B) is not

true.

<= Checks if the value of left operand is less than or equal to the

value of right operand, if yes then condition becomes true.

(A <= B) is true.

Logical Operators:

These operators are used to perform logical operations on the given two variables.

Following table shows all the logical operators supported by C language. Assume variable A

holds 1 and variable B holds 0, then:

 Programming In C

IIIrd Sem. Computer Engg. Page 33

Operator Description Example

&&

Called Logical AND operator. If both the operands are

nonzero, then condition becomes true.

(A && B) is

false.

||
Called Logical OR Operator. If any of the two operands is

non-zero, then condition becomes true.

(A || B) is true.

!

Called Logical NOT Operator. Use to reverses the logical

state of its operand. If a condition is true then Logical NOT

operator will make false.

!(A && B) is

true.

Bitwise Operators

Bitwise operator works on bits and performs bit-by-bit operation. Bitwise operators are used in bit

level programming. These operators can operate upon int and char but not on float and double.

Showbits() function can be used to display the binary representation of any integer or character

value.

Bit wise operators in C language are; & (bitwise AND), | (bitwise OR), ~ (bitwise OR), ^ (XOR),

<< (left shift) and >> (right shift).

The truth tables for &, |, and ^ are as follows:

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

 Programming In C

IIIrd Sem. Computer Engg. Page 34

The Bitwise operators supported by C language are explained in the following table.

Assume variable A holds 60 (00111100) and variable B holds 13 (00001101), then:

Operator Description Example

& Binary AND Operator copies a bit to the result if it

exists in both operands.

(A & B) will give 12,

which is 0000 1100

| Binary OR Operator copies a bit if it exists in either

operand.

(A | B) will give 61,

which is 0011 1101

^ Binary XOR Operator copies the bit if it is set in

one operand but not both.

(A ^ B) will give 49,

which is 0011 0001

~ Binary Ones Complement Operator is unary and has

the effect of ‗flipping‘ bits.

(~A) will give -61, which

is 1100 0011 in 2‘s

complement form.

<< Binary Left Shift Operator. The left operands value

is moved left by the number of bits specified by the

right operand.

A << 2 will give 240

which is 1111 0000

>> Binary Right Shift Operator. The left operands

value is moved right by the number of bits specified

by the right operand.

A >> 2 will give 15

which is 0000 1111

Assignment Operators:

In C programs, values for the variables are assigned using assignment

operators. There are following assignment operators supported by C

language:

Operator Description Example

= Simple assignment operator, Assigns values from right side

operands to left side operand

C = A + B will

assign value of A +

B into C

 Programming In C

IIIrd Sem. Computer Engg. Page 35

+= Add AND assignment operator, It adds right operand to the

left operand and assign the result to left operand

C += A is

equivalent to C = C

+ A

-= Subtract AND assignment operator, It subtracts right

operand from the left operand and assign the result to left

operand

C -= A is

equivalent to C = C

– A

*= Multiply AND assignment operator, It multiplies right

operand with the left operand and assign the result to left

operand

C *= A is

equivalent to C = C

* A

/= Divide AND assignment operator, It divides left operand

with the right operand and assign the result to left operand

C /= A is

equivalent to C = C

/ A

%= Modulus AND assignment operator, It takes modulus using

two operands and assign the result to left operand

C %= A is

equivalent to C = C

% A

<<= Left shift AND assignment operator C <<= 2 is same as

C = C << 2

>>= Right shift AND assignment operator C >>= 2 is same as

C = C >> 2

&= Bitwise AND assignment operator C &= 2 is same as

C = C & 2

^= bitwise exclusive OR and assignment operator C ^= 2 is same as C

= C ^ 2

|= bitwise inclusive OR and assignment operator C |= 2 is same as C

= C | 2

 Programming In C

IIIrd Sem. Computer Engg. Page 36

INCREMENT AND DECREMENT OPERATOR

In C, ++ and – are called increment and decrement operators respectively. Both of these operators

are unary operators, i.e, used on single operand. ++ adds 1 to operand and – subtracts 1 to

operand respectively. For example:

Let a=5 and b=10

a++; //a becomes

6 a--; //a becomes 5

++a; //a becomes 6

--a; //a becomes 5

When i++ is used as prefix(like: ++var), ++var will increment the value of var and then return

it but, if ++ is used as postfix(like: var++), operator will return the value of operand first and

then only increment it. This can be demonstrated by an example:

#include <stdio.h>

int main()

{

int c=2,d=2;

printf(“%d\n”,c++); //this statement displays 2 then, only c incremented by 1 to 3.

Printf(“%d”,++c); //this statement increments 1 to c then, only c is displayed.

Return 0;

}

Output

2

 Programming In C

IIIrd Sem. Computer Engg. Page 37

4

Conditional Operators (? :)

Conditional operators are used in decision making in C programming, i.e, executes

different statements according to test condition whether it is either true or false.

Syntax of conditional operators;

conditional_expression?expression1:expression2

If the test condition is true (that is, if its value is non-zero), expression1 is returned and if

false expression2 is returned.

Let us understand this with the help of a few examples:

int x, y ;

scanf (“%d”, &x) ;

y = (x> 5 ? 3 : 4) ;

This statement will store 3 in y if x is greater than 5, otherwise it will store 4 in

y. The equivalent if statement will be,

if (x > 5)

y = 3 ;

else

y = 4 ;

Misc Operators:

There are few other operators supported by c language.

Operator Description Example

 Programming In C

IIIrd Sem. Computer Engg. Page 38

sizeof() It is a unary operator which is used in

finding the size of data type, constant,

arrays, structure etc.

sizeof(a), where a is integer, will

return 4.

& Returns the address of a variable. &a; will give actual address of

the variable.

* Pointer to a variable. *a; will pointer to a variable.

Operators Precedence in C

Operator precedence determines the grouping of terms in an expression. This affects how

an expression is evaluated. Certain operators have higher precedence than others; for

example, the multiplication operator has higher precedence than the addition operator.

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has

higher precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the

lowest appear at the bottom. Within an expression, higher precedence operators will be evaluated

first.

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* &sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift <<>> Left to right

Relational <<= >>= Left to right

Equality == != Left to right

 Programming In C

IIIrd Sem. Computer Engg. Page 39

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

 Programming In C

IIIrd Sem. Computer Engg. Page 40

CONTROL STATEMENTS

In C, programs are executed sequentially in the order of which they appear. This condition

does not hold true always. Sometimes a situation may arise where we need to execute a

certain part of the program. Also it may happen that we may want to execute the same part

more than once. Control statements enable us to specify the order in which the various

instructions in the program are to be executed. They define how the control is transferred

to other parts of the program. Control statements are classified in the following ways:

Fig: 1 Classification of control statements

 Programming In C

IIIrd Sem. Computer Engg. Page 41

SELECTION STATEMENTS

The selection statements are also known as Branching or Decision Control Statements.

Introduction to Decision Control Statements

Sometime we come across situations where we have to make a decision. E.g. If the

weather is sunny, I will go out & play, else I will be at home. Here my course of action is

governed by the kind of weather. If it‘s sunny, I can go out & play, else I have to stay

indoors. I choose an option out of 2 alternate options. Likewise, we can find ourselves in

situations where we have to select among several alternatives. We have decision control

statements to implement this logic in computer programming.

Decision making structures require that the programmer specify one or more conditions to

be evaluated or tested by the program, along with a statement or statements to be executed

if the condition is determined to be true, and optionally, other statements to be executed if

the condition is determined to be false.

if Statement

The keyword if tells the compiler that what follows is a decision control instruction. The if

statement allows us to put some decision -making into our programs. The general form of

the if statement is shown Fig 2:

Fig 2: if statement construct

 Programming In C

IIIrd Sem. Computer Engg. Page 42

Syntax of if statement:

if (condition)

{

Statement 1;

…………..

Statement n;

}

//Rest of the code

If the condition is true(nonzero), the statement will be executed. If the

condition is false(0), the statement will not be executed. For example, suppose we

are writing a billing program.

if (total_purchase >=1000)

printf("You are gifted a pen drive.\n");

Multiple statements may be grouped by putting them inside curly braces {}. For

example:

if (total_purchase>=1000)

{

gift_count++;

printf("You are gifted a pen drive.\n");

}

For readability, the statements enclosed in {} are usually indented. This

allows the programmer to quickly tell which statements are to be conditionally

executed. As we will see later, mistakes in indentation can result in programs

that are misleading and hard to read.

Programs:

1. Write a program to print a message if negative no is entered.

#include<stdio.h>
int main()

{

 Programming In C

IIIrd Sem. Computer Engg. Page 43

int no;

printf("Enter a no : ");

scanf("%d", &no);

if(no<0)

{

printf("no entered is negative");

no = -no;

}

printf("value of no is %d \n",no);

return 0;
}

Output:

Enter a no: 6

value of no is 6

Output:

Enter a no: -2

value of no is 2

2. Write a program to perform division of 2 nos

#include<stdio.h>

int main()

{

int a,b;

float c;

printf("Enter 2 nos : ");

scanf("%d %d", &a, &b);

if(b == 0)

{

}

c = a/b;

 Programming In C

IIIrd Sem. Computer Engg. Page 44

printf("Division is

not possible");

 Programming In C

IIIrd Sem. Computer Engg. Page 45

printf("quotient is %f \n",c);

return 0;

}

Output:

Enter 2 nos: 6 2

quotient is 3

Output:

Enter 2 nos: 6 0

Division is not possible

if-else Statement

The if statement by itself will execute a single statement, or a group of statements, when

the expression following if evaluates to true. By using else we execute another group of

statements if the expression evaluates to false.

if (a > b)

{ z = a;

printf(“value of z is :%d”,z);

}

else

{ z = b;

printf(“value of z is :%d”,z);

}

 Programming In C

IIIrd Sem. Computer Engg. Page 46

The group of statements after the if is called an ‗if block‘. Similarly, the statements
after

the else form the ‗else block‘.

Programs:

3. Write a program to check whether the given no is even or odd

#include<stdio.h>

int main()

{

int n;

printf("Enter an integer\n");
scanf("%d",&n);

if (n%2 == 0)

printf("Even\n");

else

printf("Odd\n");

return 0;

}

Output:

Enter an integer 3

Odd

Output:

Enter an integer 4

Even

4. Write a program to check whether a given year is leap year or not

#include <stdio.h>

int main()

{

int year;

printf("Enter a year to check if it is a leap year\n");

scanf("%d", &year);

 Programming In C

IIIrd Sem. Computer Engg. Page 47

if ((year%4 == 0) && ((year%100 != 0) || (year%400 == 0))

printf("%d is a leap year.\n", year);

else

printf("%d is not a leap year.\n", year);

return 0;

}

Output:

Enter a year to check if it is a leap year 1996
1996 is a leap year

Output:

Enter a year to check if it is a leap year 2015
2015 is not a leap year

 Programming In C

IIIrd Sem. Computer Engg. Page 48

Nested if-else

An entire if-else construct can be written within either the body of the if statement or the

body of an else statement. This is called ‗nesting‘ of ifs. This is shown in the following

structure.

if (n > 0)

{

}

else

if (a > b)

z = a;

z = b;

The second if construct is nested in the first if statement. If the condition in the first if
statement is true, then the condition in the second if statement is checked. If it is false,

then the else statement is executed.

Program:

5. Write a program to check for the relation between 2 nos

#include <stdio.h>

int main()

{

int m=40,n=20;

if ((m >0) && (n>0))

{

printf("nos are positive");

if (m>n)

{

 Programming In C

IIIrd Sem. Computer Engg. Page 49

}

else

 Programming In C

IIIrd Sem. Computer Engg. Page 50

}

else

{

}

 Programming In C

IIIrd Sem. Computer Engg. Page 51

printf("m is greater than n");

printf("m is less than n");

{

printf("nos are negative");

}

Output

return 0;

}

40 is greater than 20

else-if Statement:

This sequence of if statements is the most general way of writing a multi−way decision.

The expressions are evaluated in order; if an expression is true, the statement associated

with it is executed, and this terminates the whole chain. As always, the code for each

statement is either a single statement, or a group of them in braces.

If (expression)

statement

else if (expression)

statement

else if (expression)

statement

else if (expression)

statement

else

statement

 Programming In C

IIIrd Sem. Computer Engg. Page 52

The last else part handles the ``none of the above'' or default case where none of the other
conditions is satisfied. Sometimes there is no explicit action for the default; in that case

the trailing can be omitted, or it may be used for error checking to catch an ―impossible‖

condition.

Program:

6. The above program can be used as an eg here.

#include <stdio.h>

int main()

{

int m=40,n=20;

if (m>n)

{

printf("m is greater than n");

}

else if(m<n)

{

}

else

printf("m is less than n");

 Programming In C

IIIrd Sem. Computer Engg. Page 53

{

printf("m is equal to n");

}

}

Output:

m is greater than n

switch case:

This structure helps to make a decision from the number of choices. The switch

statement

is a multi−way decision that tests whether an expression matches one of a number

of
constant integer values, and branches accordingly [3].

switch(integer expression)

{

case constant 1 :

do this;

case constant 2 :

do this ;

case constant 3 :

do this ;

default :

do this ;

}

The integer expression following the keyword switch is any C expression that will

yield

an integer value. It could be an integer constant like 1, 2 or 3, or an expression

that evaluates to an integer. If a case matches the expression value, execution

starts at that case. All case expressions must be different. The case labelled default is

executed if none

of the other cases are satisfied. A default is optional; if it isn't there and if none of

the cases match, no action at all takes place. Cases and the default clause can occur

 Programming In C

IIIrd Sem. Computer Engg. Page 54

in any order.

Consider the following program:

main()

{ int i = 2; switch

(i)

{

case 1:

printf ("I am in case 1 \n") ;

case 2:

printf ("I am in case 2 \n") ;

case 3:

printf ("I am in case 3 \n") ;

default :

printf ("I am in default \n") ; }

}

The output of this program would be:

I am in case 2

I am in case 3

I am in default

Here the program prints case 2 and 3 and the default case. If you want that only

case 2 should get executed, it is up to you to get out of the switch then and there by

using a break statement.

main()

{

int i = 2 ;

switch (i)

{

case 1:

printf ("I am in case 1 \n") ;

break ;

case 2:

printf ("I am in case 2 \n") ;

 Programming In C

IIIrd Sem. Computer Engg. Page 55

break ;

case 3:

printf ("I am in case 3 \n") ;

break ;

default:

printf ("I am in default \n") ;

}

}

The output of this program would be:

I am in case 2

Program

7. WAP to enter a grade & check its corresponding remarks.

#include <stdio.h>

int main ()

{

char grade;

printf(“Enter the grade”);

scanf(“%c”, &grade);

switch(grade)

{

case 'A' :printf("Outstanding!\n");

break;

case 'B' : printf("Excellent!\n");

break;

case 'C' :printf("Well done\n");

break;

case 'D' : printf("You passed\n");

break;

case 'F' : printf("Better try again\n");

break;

default : printf("Invalid grade\n");

}

 Programming In C

IIIrd Sem. Computer Engg. Page 56

printf("Your grade is %c\n", grade);

return 0;

}

Output

Enter the grade

B

Excellent

Your grade is B

 Programming In C

IIIrd Sem. Computer Engg. Page 57

ITERATIVE STATEMENTS

while statement

The while statement is used when the program needs to perform repetitive tasks.

The general form of a while statement is:

while (condition)

statement ;

The program will repeatedly execute the statement inside the while until the

condition becomes false(0). (If the condition is initially false, the statement will

not be executed.) Consider the following program:

main()

{ int p, n, count;

float r, si;

count = 1;

while (count <= 3)

{

printf ("\nEnter values of p, n and r ") ;

scanf(“%d %d %f", &p, &n, &r) ;

si=p * n * r / 100 ;

printf ("Simple interest = Rs. %f", si) ;

count = count+1;

}

}

Some outputs of this program:

Enter values of p, n and r 1000 5 13.5

Simple Interest = Rs. 675.000000

Enter values of p, n and r 2000 5 13.5

Simple Interest = Rs. 1350.000000

Enter values of p, n and r 3500 5 13.5

 Programming In C

IIIrd Sem. Computer Engg. Page 58

Simple Interest = Rs. 612.000000

The program executes all statements after the while 3 times. These statements form

what

is called the ‗body‘ of the while loop. The parentheses after the while contain a

condition.

As long as this condition remains true all statements within the body of the while

loop keep getting executed repeatedly.

Consider the following program;

/* This program checks whether a given number is a palindrome or not */

#include <stdio.h>

int main()

{

int n, reverse = 0, temp;

printf("Enter a number to check if it is a palindrome or not\n");

scanf("%d",&n);

temp = n;

while(temp != 0)

{

reverse = reverse *

10; reverse = reverse

+temp%10; temp =

temp/10;

}

if (n == reverse)

printf("%d is a palindrome number.\n", n);
else

printf("%d is not a palindrome number.\n", n);

return 0;

}

Output:

Enter a number to check if it is a palindrome or not

 Programming In C

IIIrd Sem. Computer Engg. Page 59

12321

12321 is a palindrome

Enter a number to check if it is a palindrome or not

12000

12000 is not a palindrome

do-while Loop

The body of the do-while executes at least once. The do-while structure is

similar to the while loop except the relational test occurs at the bottom (rather than

top) of the loop. This ensures that the body of the loop executes at least once.

The do-while tests for a positive relational test; that is, as long as the test is True,

the body of the loop continues to execute.

The format of the do-while is

do

{ block of one or more C statements; }

while (test expression)

The test expression must be enclosed within parentheses, just as it does with a

while statement.

Consider the following program

// C program to add all the numbers entered by a user until user enters 0.

#include <stdio.h>

int main()

{ int sum=0,num;

do /* Codes inside the body of do...while loops are at least executed once.

*/

{

printf("Enter a

number\n");

scanf("%d",&num);

sum+=num;

}

while(num!=0);

 Programming In C

IIIrd Sem. Computer Engg. Page 60

printf("sum=%d",

sum); return 0;

}

Output:

Enter a number

3

Enter a number

-2

Enter a number

0

sum=1

Consider the following program:

#include <stdio.h>

main()

{

int i = 10;

do

{

printf("Hello %d\n", i);

i = i -1;

}while (i > 0);

}

Output

Hello 10

Hello 9

Hello 8

Hello 7

Hello 6

Hello 5

Hello 4

Hello 3

 Programming In C

IIIrd Sem. Computer Engg. Page 61

Hello 2

Hello 1

Program

8. Program to count the no of digits in a number

#include <stdio.h>
int main()

{

int n,count=0;

printf("Enter an integer: ");

scanf("%d", &n);

do

{

n/=10; /* n=n/10 */

count++;

} while(n!=0);

printf("Number of digits: %d",count);

}

Output

Enter an integer: 34523

Number of digits: 5

for Loop

The for is the most popular looping instruction. The general form of for statement

is as under:

for (initialise counter ; test counter ; Updating counter)

{

d

o

t

 Programming In C

IIIrd Sem. Computer Engg. Page 62

h

i

s

;

a

n

d

t

h

i

s

;

a

n

d

t

h

i

s

;

}

The for allows us to specify three things about a loop in a single line:

(a) Setting a loop counter to an initial value.

(b) Testing the loop counter to determine whether its value has reached the

number of repetitions desired.

(c) Updating the value of loop counter either increment or

decrement. Consider the following program

 Programming In C

IIIrd Sem. Computer Engg. Page 63

int main(void)

{

int num;

printf(" n n cubed\n");

for (num = 1; num <= 6; num++)

printf("%5d %5d\n", num, num*num*num);

return 0;

}

The program prints the integers 1 through 6 and their cubes.

n n cubed

1 1

2 8

3 27

4 64

5 125

6 216

The first line of the for loop tells us immediately all the information about

the loop parameters: the starting value of num, the final value of num, and the

amount that num increases on each looping [5].

Grammatically, the three components of a for loop are expressions. Any of the three

parts can be omitted, although the semicolons must remain.

Consider the following program:

main()

{

int i ;

for (i = 1 ; i <= 10 ;)

{

printf ("%d\n", i) ;

i = i + 1 ;

}

}

Here, the increment is done within the body of the for loop and not in the for

 Programming In C

IIIrd Sem. Computer Engg. Page 64

statement.
Note that in spite of this the semicolon after the condition is necessary.

Programs:

9. Program to print the sum of 1
st

N natural numbers.

#include <stdio.h>
int main()

{

int n,i,sum=0;

printf("Enter the limit: ");

scanf("%d", &n);

for(i=1;i<=n;i++)

{

sum = sum +i;

}

printf("Sum of N natural numbers is: %d",sum);

}

Output

Enter the limit: 5

Sum of N natural numbers is 15.

10. Program to find the reverse of a number

#include<stdio.h>

int main()

{

int num,r,reverse=0;

printf("Enter any number:

"); scanf("%d",&num);

for(;num!=0;num=num/1

0)

{

r=num%10;

reverse=reverse*10+r;

}

 Programming In C

IIIrd Sem. Computer Engg. Page 65

printf("Reversed of number: %d",reverse);

return 0;

}

Output:

Enter any number: 123

Reversed of number: 321

NESTING OF LOOPS

C programming language allows using one loop inside another loop. Following section

shows few examples to illustrate the concept.

Syntax:

The syntax for a nested for loop statement in C is as follows:

for (init; condition; increment)

{

for (init; condition; increment)

{
statement(s);

}

statement(s);

}

The syntax for a nested while loop statement in C programming language is as follows:

while(condition)

{

while(condition)

{

statement(s);

}

statement(s);

}

 Programming In C

IIIrd Sem. Computer Engg. Page 66

The syntax for a nested do...while loop statement in C programming language is as

follows:

do

{

statement(s);

do

{

statement(s);

}while(condition);

}while(condition);

A final note on loop nesting is that you can put any type of loop inside of any other type

of loop. For example, a for loop can be inside a while loop or vice versa.

Programs:

11. program using a nested for loop to find the prime numbers from 2 to 20:

#include <stdio.h>

int main ()

{

/* local variable definition */

int i, j;

for(i=2; i<20; i++)

{

for(j=2; j <= (i/j); j++)

if(!(i%j))

break; // if factor found,

not prime if(j > (i/j))

printf("%d is prime\n", i);

}

return 0;

}

Output

 Programming In C

IIIrd Sem. Computer Engg. Page 67

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

12. *

#include <stdio.h>

int main()

{

int row, c, n,I, temp;

printf("Enter the number of rows in pyramid of stars you wish to see ");

scanf("%d",&n);

temp = n;

for (row = 1 ; row <= n ; row++)

{

for (i= 1 ; i < temp ; i++)

{

printf(" ");

temp--;

for (c = 1 ; c <= 2*row - 1 ; c++)

{

printf("*");

printf("\n");

}

}

}

return 0;

}

 Programming In C

IIIrd Sem. Computer Engg. Page 68

13. Program to print series from 10 to 1 using nested loops.

#include<stdio.h>

void main ()

{

int a;

a=10;

for (k=1;k=10;k++)

{

while (a>=1)

{

printf ("%d",a);

a--;

}

printf("\n");

a= 10;

}

}

Output:

10 9 8 7 5 4 3 2 1

10 9 8 7 5 4 3 2 1

10 9 8 7 5 4 3 2 1

10 9 8 7 5 4 3 2 1

10 9 8 7 5 4 3 2 1

10 9 8 7 5 4 3 2 1

10 9 8 7 5 4 3 2 1

10 9 8 7 5 4 3 2 1

10 9 8 7 5 4 3 2 1

10 9 8 7 5 4 3 2 1

 Programming In C

IIIrd Sem. Computer Engg. Page 69

JUMP STATEMENTS

The break Statement
The break statement provides an early exit from for, while, and do, just as from switch. A break

causes the innermost enclosing loop or switch to be exited immediately. When break is

encountered inside any loop, control automatically passes to the first statement after the loop.

Consider the following example;

main()

{

int i = 1 , j = 1 ;

while (i++ <= 100)

{

while (j++ <= 200)

{

if (j == 150)

break ;

else

printf ("%d %d\n", i, j);

}

}

}

In this program when j equals 150, break takes the control outside the inner while only,
since it is placed inside the inner while.

The continue Statement

The continue statement is related to break, but less often used; it causes the next iteration

of the enclosing for, while, or do loop to begin. In the while and do, this means that the

test part is executed immediately; in the for, control passes to the increment step. The

continue statement applies only to loops, not to switch.

Consider the following program:

main()

 Programming In C

IIIrd Sem. Computer Engg. Page 70

{

 Programming In C

IIIrd Sem. Computer Engg. Page 71

int i, j ;

for (i = 1 ; i <= 2 ; i++)

{

for (j = 1 ; j <= 2 ; j++)

{ if (i == j)

continue ;

printf ("\n%d %d\n", i, j) ;

}

}

}

The output of the above program would be...

1 2

2 1

Note that when the value of I equals that of j, the

continue statement takes the control to

the for loop (inner) by passing rest of the statements

pending execution in the for loop
(inner).

The goto statement

Kernighan and Ritchie refer to the goto statement as

"infinitely abusable" and suggest that

it "be used sparingly, if at all.

The goto statement causes your program to jump

to a different location, rather than execute the next

statement in sequence. The format of the goto

statement is;

goto statement label;

Consider the following program fragment

if (size > 12)

goto a;

goto b;

a: cost = cost * 1.05;

flag = 2;

b: bill = cost * flag;

Here, if the if conditions

satisfies the program jumps

to block labelled as a: if not

then it jumps to block

labelled as b:.

Exercise questions:

1. WAP to input the 3

sides of a triangle & print

its corresponding type.

2. WAP to input the

name of salesman &

total sales made by

him. Calculate & print

the commission earned.

TOTAL

SALES RATE OF COMMISSION

1-1000 3 %

1001-

4000 8 %

6001-

6000 12 %

6001

and

above 15 %

3. WAP to calculate the

wages of a labor.

TIME WAGE

 Programming In C

IIIrd Sem. Computer Engg. Page 72

First 10 hrs. Rs 60

Next 6 hrs. Rs 15

Next 4 hrs. Rs 18

Above 10 hrs. Rs 25

4. WAP to calculate the area of a triangle, circle,

square or rectangle based on the user‘s

choice.

5. WAP that will print various formulae & do

calculations:

i. Vol of a cube

ii. Vol of a cuboid

i

i

i

.

V

o

l

o

f

a

c

y

c

l

i

n

d

e

r

i

v

.

V

o

l

o

f

s

p

h

e

r

e

6. WAP to print the

following series

i. S = 1 + 1/2 +

1/3 ……..1/10

ii. P= (1*2) + (2

3) + (3

4)+…….(8 *9) +(9

*10)

iii. Q= ½ + ¾ +5/6

+….13/14

iv. S = 2/5 + 5/9 +

8/13….n

v. S = x + x
2

+ x
3

+ x
4
......+ x

9
+ x

10

vi. P= x + x
3
/3 +

x
5
/5 +

x
7
/7……………n

terms

vii. S= (13 *1) +

(12 * 2)……(1 *13)

viii. S = 1 + 1/(2
2
)

 Programming In C

IIIrd Sem. Computer Engg. Page 73

+ 1/ (3
3
) + 1/(4

4
) + 1/(5

5
)

ix. S = 1/1! + 1/2! + 1/3! ……………+1/n!

x. S = 1 + 1/3! + 1/5!+……..n terms

xi. S = 1 + (1+2) +(1+2+3) +

(1+2+3+4)……………+(1+2+3…….20)

xii. S= x + x
2
/2! + x

3
/3! + x

4
/4!.....+x

10
/10!

xiii. P = x/2! + x
2
/3! +…….x

9
/10!

xiv. S = 1 – 2 + 3 - 4………. + 9 – 10

xv. S = 1 -2
2

+ 3
2

- 4
2
………. +9

2
- 10

2

xvi. S = 1/(1 + 2) + 3/(3 + 5)……15/(15 + 16)

xvii. S = 1 +x
2
/2! – x

4
/4! + x

6
/6!....n

xviii. S = 1 + (1 + 2) +

(1+2+3)……..(1+2+3+4…..20)

xix. S = 1 + x + x
2
/2 + x

3
/3…….+x

n
/n

xx. S = 1 * 3/ 2 * 4 * 5 + 2 * 4 / 3 * 5 * 6 + 3 *

5/ 4 * 6 * 7……..n * (n+2)/ (n+1) *

(n+3) * (n+4)

7. WAP to input a no & print its corresponding table.

8. WAP to print the table from 1 to 10 till 10 terms.

9. WAP to input a no & print its factorial.

10. WAP to input a no & check whether it is prime or

not.

11. WAP to input a no & print all the prime nos upto it.

12. WAP to input a no & print if the no is perfect or not.

13. WAP to find the HCF of 2 nos.

14. WAP to print the Pythagoras triplets within 100. (A

Pythagorean triplet consists of three positive integers
a, b, and c, such that a

2
+ b

2
= c

2
).

15. WAP to input a no & check whether its automorphic or
not. (An automorphic number is a

number whose square "ends" in the same digits as

the number itself. For example, 5
2

=

25, 6
2

= 36, 76
2

= 5776, and 890625
2

=

793212890625, so 5, 6, 76 and 890625 are all

automorphic numbers).

16. WAP to convert a given no of days into years, weeks

& days.

17. WAP to input a no & check whether it‘s an

Armstrong no or not. (An
Armstrong no is an
integer such that the
sum of the cubes of its
digits is equal to the
number itself. For
example, 371 is an
Armstrong number since

3
3

+ 7
3

+ 1
3

= 371).

18. A cricket kit supplier in

Jalandhar sells bats,

wickets & balls. WAP to

generate sales bill. Input

form the console the

date of purchase, name

of the buyer, price of

each item & quantity of

each item. Calculate the

total sale amount & add

17.5 % sales tax if the

total sales amount

>300000 & add 12.5 %

if the total sales

amount is >150000 &

7 % otherwise. Display

the total sales amount, the

sales tax & the grand

total.

19. WAP to check whether a

given number is magic

number or not.

(What is a magic

number? Example:

1729

• Find the sum of

digits of the given

number.(1 + 7 + 2 + 9

=> 19)

• Reverse of digit sum

output. Reverse of 19 is

91

• Find the product

 Programming In C

IIIrd Sem. Computer Engg. Page 74

of digit sum and the reverse of digit sum.(19 X

91 = 1729)

• If the product value and the given input are

same, then the given number is a magic

number.(19 X 91 <=> 1729)

20. Write a C program to calculate generic root of the

given number. (To find the generic root

of a no we first find the sum of digits of the no until we get

a single digit output. That resultant no

is called the generic no. Eg: 456791: 4+5+6+7+9+1=32. 3

+2 =5. So, 5 becomes the generic root

of the given no)

 Programming In C

IIIrd Sem. Computer Engg. Page 75

FUNCTION

MONOLITHIC VS MODULAR PROGRAMMING:

1. Monolithic Programming indicates the program which contains a single function for the large

program.

2. Modular programming help the programmer to divide the whole program into different

modules and each module is separately developed and tested. Then the linker will link all

these modules to form the complete program.

3. On the other hand monolithic programming will not divide the program and it is a single

thread of execution. When the program size increases it leads inconvenience and difficult to

maintain.

Disadvantages of monolithic programming: 1. Difficult to check error on large programs. 2.

Difficult to maintain. 3. Code can be specific to a particular problem. i.e. it can not be reused.

Advantage of modular programming: 1. Modular program are easier to code and debug. 2.

Reduces the programming size. 3. Code can be reused in other programs. 4. Problem can be

isolated to specific module so easier to find the error and correct it.

FUNCTION:

A function is a group of statements that together perform a task. Every C program has at least one

function, which is main(), and all the most trivial programs can define additional functions.

Function Declaration OR Function Prototype:

1. It is also known as function prototype .

2. It inform the computer about the three things

a) Name of the function

b) Number and type of arguments received by the function.

c) Type of value return by the function

Syntax :

return_type function_name (type1 arg1 , type2 arg2);

OR

return_type function_name (type1 type2);

 Programming In C

IIIrd Sem. Computer Engg. Page 76

3. Calling function need information about called function .If called function is place before

calling function then the declaration is not needed.

Function Definition:

1. It consists of code description and code of a function .

It consists of two parts

a) Function header

b) Function coding

Function definition tells what are the I/O function and what is going to do.

Syntax:

return_type function_name (type1 arg1 , type2 arg2)

{

local variable;

statements ;

return (expression);

}

2. Function definition can be placed any where in the program but generally placed after the

main function .

3. Local variable declared inside the function is local to that function. It cannot be used anywhere

in the program and its existence is only within the function.

4. Function definition cannot be nested.

5. Return type denote the type of value that function will return and return type is optional if

omitted it is assumed to be integer by default.

USER DEFINE FUNCTIONS VS STANDARD FUNCTION:

User Define Fuction:

A function that is declare, calling and define by the user is called user define function. Every

user define function has three parts as:

 Programming In C

IIIrd Sem. Computer Engg. Page 77

1. Prototype or Declaration

2. Calling

3. Definition

Standard Function:

The C standard library is a standardized collection of header files and library routines used to

implement common operations, such as input/output and character string handling. Unlike other

languages (such as COBOL, FORTRAN, and PL/I) C does not include built in keywords for

these tasks, so nearly all C programs rely on the standard library to function.

FUNCTION CATAGORIES

There are four main categories of the functions these are as follows:

1. Function with no arguments and no return values.

2. Function with no arguments and a return value.

3. Function with arguments and no return values.

4. Function with arguments and return values.

Function with no arguments and no return values:

syntax:
void funct (void);

main ()

{

funct ();

}

void funct (void);

{

}

NOTE: There is no communication between calling and called function. Functions are
executed independently, they read data & print result in same block.

 Programming In C

IIIrd Sem. Computer Engg. Page 78

Example:

 Programming In C

IIIrd Sem. Computer Engg. Page 79

void link (void) ;

int main ()

{

link ();

}

void link (void);

{

printf (“ link the file “)

}

Function with no arguments and a return value: This type of functions has no arguments but

a return value

example:
int msg (void) ;

int main ()

{

int s = msg ();

printf(“summation = %d” , s);

}

int msg (void)

{

int a, b, sum ;

sum = a+b ;

return (sum) ;

}

 Programming In C

IIIrd Sem. Computer Engg. Page 80

NOTE: Here called function is independent, it read the value from the keyboard, initialize and

return a value .Both calling and called function are partly communicated with each other.

Function with arguments and no return values:

Here functions have arguments so, calling function send data to called function but called

function does no return value. such functions are partly dependent on calling function and result

obtained is utilized by called function .

Example:

void msg (int , int);

int main ()

{

int a,b;

a= 2; b=3;

msg(a, b);

}

void msg (int a , int b)

{

int s ;

sum = a+b;

printf (“sum = %d” , s) ;

 Programming In C

IIIrd Sem. Computer Engg. Page 81

}

Function with arguments and return value:

Here calling function of arguments that passed to the called function and called function

return value to calling function.

example:

int msg (int , int) ;

int main ()

{

int a, b;

a= 2; b=3;

int s = msg (a, b);

printf (“sum = %d” , s) ;

}

int msg(int a , int b)

{

int sum ;

sum =a+b ;

return (sum);

 Programming In C

IIIrd Sem. Computer Engg. Page 82

}

ACTUAL ARGUMENTS AND FORMAL ARGUMENTS

Actual Arguments:

1. Arguments which are mentioned in the function in the function call are known as calling

function.

2. These are the values which are actual arguments called to the function.

It can be written as constant , function expression on any function call which return a value .

ex: funct (6,9) , funct (a,b)

Formal Arguments:

1. Arguments which are mentioned in function definition are called dummy or formal

argument.

2. These arguments are used to just hold the value that is sent by calling function.

3. Formal arguments are like other local variables of the function which are created when

function call starts and destroyed when end function.

Basic difference between formal and local argument are:

a) Formal arguments are declared within the () where as local variables are declared

at beginning.

b) Formal arguments are automatically initialized when a value of actual argument is

passed.

c) Where other local variables are assigned variable through the statement inside the

function body.

Note: Order, number and type of actual argument in the function call should be matched with the

order , number and type of formal arguments in the function definition .

PARAMETER PASSING TECHNIQUES:

1. call by value

 Programming In C

IIIrd Sem. Computer Engg. Page 83

2. call by reference

Call by value:

Here value of actual arguments is passed to the formal arguments and operation is done in the

formal argument.

Since formal arguments are photo copy of actual argument, any change of the formal arguments

does not affect the actual arguments

Changes made to the formal argument t are local to block of called function, so when control back

to calling function changes made vanish.

Example:

void swap (int a , int b) /* called function */

{

int t;

t = a;

a=b;

b = t;

}

main()

{

int k = 50,m= 25;

swap(k, m) ; / * calling function */ print

(k, m); / * calling function */

}

Output:

50, 25

Explanation:

 Programming In C

IIIrd Sem. Computer Engg. Page 84

int k= 50, m=25 ;

Means first two memory space are created k and m , store the values 50 and 25 respectively.

swap (k,m);

When this function is calling the control goes to the called function.

void swap (int a , int b),

k and m values are assigned to the ‗a‘ and ‗b‘.

then a= 50 and b= 25 ,

After that control enters into the function a temporary memory space ‗t‘ is created when int t is

executed.

t=a; Means the value of a is assigned to the t , then t= 50.

a=b; Here value of b is assigned to the a , then a= 25;

b=t; Again t value is assigned to the b , then b= 50;

after this control again enters into the main function and execute the print function print (k,m). it

returns the value 50 , 25.

NOTE:

Whatever change made in called function not affects the values in calling function.

Call by reference:

Here instead of passing value address or reference are passed. Function operators or address

rather than values .Here formal arguments are the pointers to the actual arguments.

 Programming In C

IIIrd Sem. Computer Engg. Page 85

Example:

 Programming In C

IIIrd Sem. Computer Engg. Page 86

#include<stdio.h>

void add(int *n);

int main()

{

int num=2;

printf(“\n The value of num before calling the function=%d”, num);

add(&num);printf(“\n The value of num after calling the function = %d”, num);

return 0;

}

void add(int *n)

{

*n=*n+10;

printf(“\n The value of num in the called function = %d”, n);

}

Output:

The value of num before calling the function=2

The value of num in the called function=20 The value

of num after calling the function=20

NOTE:

In call by address mechanism whatever change made in called function affect the values in calling

function.

EXAMPLES:

1: Write a function to return larger number between two numbers:

int fun(int p, int q)

{

int large;

if(p>q)

{

large = p;

}

 Programming In C

IIIrd Sem. Computer Engg. Page 87

else

{

large = q;

}

return large;

}

2: Write a program using function to find factorial of a number.

#include <stdio.h> int

factorial (int n)

{

int i, p;

p = 1;

for (i=n; i>1; i=i-1)

{

p = p * i;

}

return (p);

}

void main()

{

}

EXERCISE:

int a, result;

printf ("Enter an integer number: ");

scanf ("%d", &a);

result = factorial (a);

printf ("The factorial of %d is %d.\n", a, result);

 Programming In C

IIIrd Sem. Computer Engg. Page 88

1. What do you mean by function?

2. Why function is used in a program?

3. What do you mean by call by value and call by address?

4. What is the difference between actual arguments and formal arguments?

5. How many types of functions are available in C?

6. How many arguments can be used in a function?

7. Add two numbers using

a) with argument with return type

b) with argument without return type

c) without argument without return

type d) without argument with return

type

8. Write a program using function to calculate the factorial of a number entered through

the keyboard.

9. Write a function power(n,m), to calculate the value of n raised to m.

10. A year is entered by the user through keyboard. Write a function to determine whether

the year is a leap year or not.

11. Write a function that inputs a number and prints the multiplication table of that number.

12. Write a program to obtain prime factors of a number. For Example: prime factors of

24

are 2,2,2 and 3 whereas prime factors of 35 are 5 and 7.

13. Write a function which receives a float and a int from main(), finds the product of

these two and returns the product which is printed through main().

14. Write a function that receives % integers and returns the sum, average and standard

deviation of these numbers. Call this function from main() and print the result in main().

15. Write a function that receives marks obtained by a student in 3 subjects and returns the
average and percentage of these marks. Call this function from main() and print the result

in main().

16. Write function to calculate the sum of digits of a number entered by the user.

17. Write a program using function to calculate binary equivalent of a number.

18. Write a C function to evaluate the series

sin(x) = x - (x
3
/3!) + (x

5
/5!) - (x

7
/7!) +………… to five significant digit.

19. If three sides of a triangle are p, q and r respectively, then area of triangle is given by

area = (S(S-p)(S-q)(S-r))
1/2

, where S = (p+q+r)/2.

Write a program using function to find the area of a triangle using the above formula.

20. Write a function to find GCD and LCM of two numbers.

21. Write a function that takes a number as input and returns product of digits of that number.

22. Write a single function to print both amicable pairs and perfect numbers.(Two different

 Programming In C

IIIrd Sem. Computer Engg. Page 89

numbers are said to be amicable if the sum of proper divisors of each is equal to the other.

284 and 220 are amicable numbers.)

23. Write a function to find whether a character is alphanumeric.

 Programming In C

IIIrd Sem. Computer Engg. Page 90

RECURSION

Recursion is a process in which a problem is defined in terms of itself. In ‗C‘ it is possible to call
a function from itself. Functions that call themselves are known as recursive functions, i.e. a

statement within the body of a function calls the same function. Recursion is often termed as

‗Circular Definition‘. Thus recursion is the process of defining something in terms of itself. To

implement recursion technique in programming, a function should be capable of calling itself.

Example:

void main()

{

……………………… /* Some statements*/

fun1();

……………………… /* Some statements */

} void

fun1()

{

……………………… /* Some statements */ fun1();

/*RECURSIVE CALL*/

……………………… /* Some statements */

}

Here the function fun1() is calling itself inside its own function body, so fun1() is a recursive
function. When main() calls fun1(), the code of fun1() will be executed and since there is a call to

fun1() insidefun1(), again fun1() will be executed. It looks like the above program will run up to

infinite times but generally a terminating condition is written inside the recursive functions which

end this recursion. The following program (which is used to print all the numbers starting from

the given number to 1 with successive decrement by 1) illustrates this:

 Programming In C

IIIrd Sem. Computer Engg. Page 91

void main()

{

int a;

printf(“Enter a number”);

scanf(“%d”,&a);

fun2(a);

}

int fun2(int b)

{

printf(“%d”,b);

b--;

if(b>=1) /* Termination condition i.e. b is less than 1*/

{

fun2(b);

}

}

How to write a Recursive Function?

Before writing a recursive function for a problem its necessary to define the solution of the

problem in terms of a similar type of a smaller problem.

Two main steps in writing recursive function are as follows:

(i). Identify the Non-Recursive part(base case) of the problem and its solution(Part of the

problem whose solution can be achieved without recursion).

(ii). Identify the Recursive part(general case) of the problem(Part of the problem where

recursive call will be made).

Identification of Non-Recursive part of the problem is mandatory because without it the function

will keep on calling itself resulting in infinite recursion.

 Programming In C

IIIrd Sem. Computer Engg. Page 92

How control flows in successive recursive calls?

Flow of control in successive recursive calls can be demonstrated in following example:

Consider the following program which uses recursive function to compute the factorial of a

number.

void main()

{

int n,f;

printf(―Enter a number‖);

scanf(―%d‖,&n);

f=fact(a);

printf(―Factorial of %d is %d‖,n,f);

}

int fact(int m)

{

int a;

if (m==1)

return (1);

else

a=m*fact(m-1);

return (a);

}

In the above program if the value entered by the user is 1 i.e.n=1, then the value of n is copied
into m. Since the value of m is 1 the condition ‗if(m==1)‘ is satisfied and hence 1 is returned

 Programming In C

IIIrd Sem. Computer Engg. Page 93

through return statement i.e. factorial of 1 is 1.

When the number entered is 2 i.e. n=2, the value of n is copied into m. Then in function fact(), the

condition ‗if(m==1)‘ fails so we encounter the statement a=m*fact(m-1); and here we meet

recursion. Since the value of m is 2 the expression (m*fact(m-1)) is evaluated to (2*fact(1)) and

the result is stored in a(factorial of a). Since value returned by fact(1) is 1 so the above expression

reduced to (2*1) or simply 2. Thus the expression m*fact(m-1) is evaluated to 2 and stored in a

and returned to main(). Where it will print ‗Factorial of 2 is 2‘.

In the above program if n=4 then main() will call fact(4) and fact(4) will send back the computed

value i.e. f to main(). But before sending back to main() fact(4) will call fact(4-1) i.e. fact(3) and

wait for a value to be returned by fact(3). Similarly fact(3) will call fact(2) and so on. This series

of calls continues until m becomes 1 and fact(1) is called, which returns a value which is so called

as termination condition. So we can now say what happened for n=4 is as follows

fact(4) returns (4*fact(3))

fact(3) returns (3*fact(2))

fact(2) returns (2*fact(1))

fact(1) returns (1)

So for n=4, the factorial of 4 is evaluated to 4*3*2*1=24.

For n=3, the control flow of the program is as follows:

 Programming In C

IIIrd Sem. Computer Engg. Page 94

 Programming In C

IIIrd Sem. Computer Engg. Page 95

Winding and Unwinding phase

All recursive functions work in two phases- winding phase and unwinding phase.

Winding phase starts when the recursive function is called for the first time, and ends when the

termination condition becomes true in a call i.e. no more recursive call is required. In this phase a

function calls itself and no return statements are executed.

After winding phase unwinding phase starts and all the recursive function calls start returning in

reverse order till the first instance of function returns. In this phase the control returns through

each instance of the function.

Implementation of Recursion

We came to know that recursive calls execute like normal function calls, so there is no extra

technique to implement recursion. All function calls(Whether Recursive or Non-Recursive) are

implemented through run time stack. Stack is a Last In First Out(LIFO) data structure. This

means that the last item to be stored on the stack(PUSH Operation) is the first one which will be

deleted(POP Operation) from the stack. Stack stores Activation Record(AR) of function during

run time. Here we will take the example of function fact() in the previous recursive program to

find factorial of a number.

Suppose fact() is called from main() with argument 3 i.e.

fact(3); /*From main()*/

Now will see how the run time stack changes during the evaluation of factorial of 3.

 Programming In C

IIIrd Sem. Computer Engg. Page 96

The following steps will reveal how the above stack contents were expressed:

First main() is called, so PUSH AR of main() into the stack. Then main() calls fact(3) so PUSH

AR of fact(3). Now fact(3) calls fact(2) so PUSH AR of fact(2) into the stack. Likewise PUSH

AR of fact(1). After the above when fact(1) is completed, POP AR of fact(1), Similarly after

completion of a specific function POP its corresponding AR. So when main() is completed POP

AR of main(). Now stack is empty.

In the winding phase the stack content increases as new Activation Records(AR) are created and

pushed into the stack for each invocation of the function. In the unwinding phase the Activation

Records are popped from the stack in LIFO order till the original call returns.

Examples of Recursion

Q1. Write a program using recursion to find the summation of numbers from 1 to n.

Ans: We can say ‗sum of numbers from 1 to n can be represented as sum of numbers from 1 to n-

1 plus n‘ i.e.

Sum of numbers from 1 to n = n + Sum of numbers from 1 to n-1

= n + n-1 + Sum of numbers from 1 to n-2

= n+ n-1 + n-2 + +1

The program which implements the above logic is as follows:

#include<stdio.h>

void main()

{

int n,s;

printf(“Enter a number”);

scanf(“%d”,&n);

s=sum(n);

 Programming In C

IIIrd Sem. Computer Engg. Page 97

printf(“Sum of numbers from 1 to %d is %d”,n,s);

}

int sum(int m) int r;

if(m==1)

return (1);

else

r=m+sum(m-1);/*Recursive Call*/

return r;

}

Output:

Enter a number 5

15

Q2. Write a program using recursion to find power of a number i.e. n
m

. Ans:

We can write,

nm = n*nm-1

=n*n*n
m-2

=n*n*n*……………m times *n
m-m

The program which implements the above logic is as follows:

#include<stdio.h> int

power(int,int); void

main()

{

 Programming In C

IIIrd Sem. Computer Engg. Page 98

int n,m,k;

printf(“Enter the value of n and m”);

scanf(“%d%d”,&n,&m);

k=power(n,m);

printf(“The value of n
m

for n=%d and m=%d is %d”,n,m,k);

}

int power(int x, int y)

{

if(y==0)

{

return 1;

}

else

{

return(x*power(x,y-1));

}

}

Output:

Enter the value of n and m

3

5

The value of n
m

for n=3 and m=5 is 243

Q3.Write a program to find GCD (Greatest Common Divisor) of two numbers.

 Programming In C

IIIrd Sem. Computer Engg. Page 99

Ans: The GCD or HCF (Highest Common Factor) of two integers is the greatest integer that

divides both the integers with remainder equals to zero. This can be illustrated by Euclid‘s

remainder Algorithm which states that GCD of two numbers say x and y i.e.

GCD(x, y) = x if y is 0

= GCD(y, x%y)

otherwise

The program which implements the previous logic is as follows:

#include<stdio.h>

int GCD(int,int);

void main()

{

int a,b,gcd;

printf(“Enter two numbers”);

scanf(“%d%d”,&a,&b);

gcd=GCD(a,b);

printf(“GCD of %d and %d is %d”,a,b,gcd);

}

int GCD(int x, int y)

{

if(y==0)

return x;

else

return GCD(y,x%y);

}

Output:

Enter two numbers 21

35

GCD of 21 and 35 is 7

 Programming In C

IIIrd Sem. Computer Engg. Page 100

Q4:Write a program to print Fibonacci Series upto a given number of terms.

Ans: Fibonacci series is a sequence of integers in which the first two integers are 1 and from

third integer onwards each integer is the sum of previous two integers of the sequence i.e.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ……..........................

The program which implements the above logic is as follows:

#include<stdio.h>

int Fibonacci(int);

void main()

{

int term,i;

printf(“Enter the number of terms of Fibonacci Series which is going to be printed”);

scanf(“%d”,&term);

for(i=0;i<term;i++)

{

printf(“%d”,Fibonacci(i));

}

}

int Fibonacci(int x)

{

if(x==0 || x==1)

return 1;

else

return (Fibonacci(x-1) + Fibonacci(x-2));

}

Output:

Enter the number of terms of Fibonacci Series which is going to be printed 6

1 1 2 3 5 8 13

 Programming In C

IIIrd Sem. Computer Engg. Page 101

RECURSION VERSES ITERATION

Every repetitive problem can be implemented recursively or iteratively

Recursion should be used when the problem is recursive in nature. Iteration should be used when

the problem is not inherently recursive

Recursive solutions incur more execution overhead than their iterative counterparts, but its

advantage is that recursive code is very simple.

Recursive version of a problem is slower than iterative version since it requires PUSH and POP

operations.

In both recursion and iteration, the same block of code is executed repeatedly, but in recursion

repetition occurs when a function calls itself and in iteration repetition occurs when the block of

code is finished or a continue statement is encountered.

For complex problems iterative algorithms are difficult to implement but it is easier to solve

recursively. Recursion can be removed by using iterative version.

Tail Recursion

A recursive call is said to be tail recursive if the corresponding recursive call is the last statement

to be executed inside the function.

Example: Look at the following recursive function

void show(int a)

{

if(a==1)

return;

printf(“%d”,a);

show(a-1);

}

In the above example since the recursive call is the last statement in the function so the above

recursive call is Tail recursive call.

 Programming In C

IIIrd Sem. Computer Engg. Page 102

In non void functions(return type of the function is other than void) , if the recursive call

appears

in return statement and the call is not a part of an expression then the call is said to be

Tail recursive, otherwise Non Tail recursive. Now look at the following example

int hcf(int p, int q)

{

if(q

==0

)

retu

rn

p;

else

return(hcf(q,p%q)); /*Tail recursive call*/

}

int factorial(int a)

{

if(a

==0

)

retu

rn

1;

else

return(a*factorial(a-1)); /*Not a Tail recursive call*/

}

 Programming In C

IIIrd Sem. Computer Engg. Page 103

In the above example in hcf() the recursive call is not a part of expression (i.e. the call

is the expression in the return statement) in the call so the recursive call is Tail

recursive. But in factorial() the recursive call is part of expression in the return

statement(a*recursive call) , so the recursive call in factorial() is not a Tail excursive call.

A function is said to be Tail recursive if all the recursive calls in the function are tail

recursive. Tail recursive functions are easy to write using loops,

In tail recursive functions, the last work that a function does is a recursive call, so no operation

is left pending after the recursive call returns. Therefore in tail recursive functions , there is

nothing

to be done in unwinding phase, so we can jump directly from the last recursive call to the

place where recursive function was first called.

Tail recursion can be efficiently implemented by compilers so we always will try to make

our recursive functions tail recursive whenever possible.

Functions which are not tail recursive are called augmentive recursive functions and these

types

of functions have to finish the pending work after the recursive call finishes.

Indirect and Direct Recursion

If a function fun1() calls another function fun2() and the function fun2() in turn calls

function fun1(), then this type of recursion is said to be indirect recursion, because the

function fun1() is calling itself indirectly.

fun1()

{

……………………… /* Some statements*/

fun2();

……………………… /* Some statements*/

}

fun2()

{

……………………… /* Some statements*/

fun1();

……………………… /* Some statements*/

}

 Programming In C

IIIrd Sem. Computer Engg. Page 104

The chain of functions in indirect recursion may involve any number of functions.For
example
suppose n number of functions are present starting from f1() to fn() and they are involved

as following: f1() calls f2(), f2() calls f3(), f3() calls f4() and so on with fn() calls f1().

If a function calls itself directly i.e. function fun1() is called inside its own function body,

then that recursion is called as direct recursion. For example look at the following

f

u

n

1

()

{

… /* Some

statements*/

fu

n2

();

… /* Some

statements*/

}

Indirect recursion is complex, so it is rarely used.

Exercise:

Find the output of programs from 1 to 5.

1. void main()

{

printf(“%d\n”,count(17243));

}

int count(int x)

{

if(x==0)

return 0;

else

 Programming In C

IIIrd Sem. Computer Engg. Page 105

}

return 1+count(x/10)

 Programming In C

IIIrd Sem. Computer Engg. Page 106

2. void main()

{ printf(“%d\n”,fun(4,8));

printf(“%d\n”,fun(3,8));

}

int fun(int x. int y)

{

if(x==y) return

x; else

return (x+y+fun(x+1,y-1));

}

3. void main()

{

printf(“%d\n”,fun(4,9));

printf(“%d\n”,fun(4,0));

printf(“%d\n”,fun(0,4));

}

int fun(int x, int y)

{

if(y==0)

return 0;

if(y==1)

return x;

 Programming In C

IIIrd Sem. Computer Engg. Page 107

return x+fun(x,y-1);

}

4. void main()

{

printf(“%d\n”,fun1(14837));

}

int fun1(int m)

{

return ((m)? m%10+fun1(m/10):0);

}

5. void main()

{

printf(“%d\n”,fun(3,8));

}

int fun(int x, int y)

{

if(x>y)

return 1000;

return x+fun(x+1,y);

}

6. What is the use of recursion in a program, Explain?

7. Explain the use of stack in recursion.

8. What do you mean by winding and unwinding phase?

9. How to write a recursive function, Explain with example?

10. What is the difference between tail and non-tail recursion, explain with example.

11. What is indirect recursion?

12. What is the difference between iteration and recursion?

13. Write a recursive function to enter a line of text and display it in reverse order, without

storing the text in an array.

14. Write a recursive function to count all the prime numbers between number p and q(both

inclusive).

 Programming In C

IIIrd Sem. Computer Engg. Page 108

15. Write a recursive function to find quotient when a positive integer m is divided by a

positive integer n.

16. Write a program using recursive function to calculate binary equivalent of a number.

17. Write a program using recursive function to reverse number.

18. Write a program using recursive function to find remainder when a positive integer m is

divided by a positive integer n.

19. Write a recursive function that displays a positive integer in words, for example if the

integer is 465 then it is displayed as -four six five.

20. Write a recursive function to print the pyramids

1 abcd

1 2 abc

1 2 3 ab

1 2 3 4 a

21. Write a recursive function to find the Binomial coefficient C(n,k), which is defined as:

C(n,0)=1

C(n,n)=1

C(n,k)=C(n-1,k-1)+C(n-1,k)

 Programming In C

IIIrd Sem. Computer Engg. Page 109

ARRAYS

 Programming In C

IIIrd Sem. Computer Engg. Page 110

Introduction

A data structure is the way data is stored in the machine and the functions used to access that

data. An easy way to think of a data structure is a collection of related data items. An array is a

data structure that is a collection of variables of one type that are accessed through a common

name. Each element of an array is given a number by which we can access that element which is

called an index. It solves the problem of storing a large number of values and manipulating them.

Arrays

Previously we use variables to store the values. To use the variables we have to declare the

variable and initialize the variable i.e, assign the value to the variable. Suppose there are 1000

variables are present, so it is a tedious process to declare and initialize each and every variable

and also to handle 1000 variables. To overcome this situation we use the concept of array .In an

Array values of same type are stored. An array is a group of memory locations related by the fact

that they all have the same name and same type. To refer to a particular location or element in

the array we specify the name to the array and position number of particular element in the array.

One Dimensional Array

Declaration:

Before using the array in the program it must be declared

Syntax:

data_type array_name[size];

data_type represents the type of elements present in the array.

array_name represents the name of the array.

Size represents the number of elements that can be stored in the array.

Example:

int age[100];

float sal[15];

char grade[20];

Here age is an integer type array, which can store 100 elements of integer type. The array sal is

 Programming In C

IIIrd Sem. Computer Engg. Page 111

floating type array of size 15, can hold float values. Grade is a character type array which holds

20 characters.

Initialization:

We can explicitly initialize arrays at the time of declaration.

Syntax:

data_type array_name[size]={value1, value2,……..valueN};

Value1, value2, valueN are the constant values known as initializers, which are assigned to the

array elements one after another.

Example:

int marks[5]={10,2,0,23,4};

The values of the array elements after this initialization are:

marks[0]=10, marks[1]=2, marks[2]=0, marks[3]=23, marks[4]=4

NOTE:

1. In 1-D arrays it is optional to specify the size of the array. If size is omitted during
initialization then the compiler assumes the size of array equal to the number of

initializers.

Example:

int marks[]={10,2,0,23,4};

Here the size of array marks is initialized to 5.

2. We can‘t copy the elements of one array to another array by simply assigning it.

Example:

int a[5]={9,8,7,6,5};

int b[5];

b=a; //not valid

we have to copy all the elements by using for loop.

 Programming In C

IIIrd Sem. Computer Engg. Page 112

for(a=i; i<5; i++)

b[i]=a[i];

Processing:

For processing arrays we mostly use for loop. The total no. of passes is equal to the no.

of elements present in the array and in each pass one element is processed.

Example:

#include<stdio.h>

main()

{

int a[3],i;

for(i=0;i<=2;i++) //Reading the array values

{

printf(“enter the elements”);

scanf(“%d”,&a[i]);

}

for(i=0;i<=2;i++) //display the array values

{

printf(“%d”,a[i]);

printf(“\n”);

}

}

This program reads and displays 3 elements of integer type.

 Programming In C

IIIrd Sem. Computer Engg. Page 113

Example:1

C Program to Increment every Element of the Array by one & Print Incremented Array.

#include <stdio.h>

void main()

{

int i;

int array[4] = {10, 20, 30, 40};

for (i = 0; i < 4; i++)

arr[i]++;

for (i = 0; i < 4; i++)

printf("%d\t", array[i]);

}

Example: 2

C Program to Print the Alternate Elements in an Array

#include <stdio.h>

void main()

{

int array[10];

int i, j, temp;

printf("enter the element of an array \n");

for (i = 0; i < 10; i++)

scanf("%d", &array[i]);

printf("Alternate elements of a given array \n");

for (i = 0; i < 10; i += 2)

printf("%d\n", array[i]) ;

 Programming In C

IIIrd Sem. Computer Engg. Page 114

}

Example-3

C program to accept N numbers and arrange them in an ascending order

#include <stdio.h>

void main()

{

int i, j, a, n, number[30];

printf("Enter the value of N \n");

scanf("%d", &n);

printf("Enter the numbers \n");

for (i = 0; i < n; ++i)

scanf("%d", &number[i]);

for (i = 0; i < n; ++i)

{

for (j = i + 1; j < n; ++j)

{

if (number[i] > number[j])

{

a =number[i];

number[i] = number[j];

number[j] = a;

}

}

}

printf("The numbers arranged in ascending order are given below \n");

for (i = 0; i < n; ++i)

printf("%d\n", number[i]);

}

 Programming In C

IIIrd Sem. Computer Engg. Page 115

TWO DIMENSIONAL ARRAYS

Arrays that we have considered up to now are one dimensional array, a single line of elements.

Often data come naturally in the form of a table, e.g. spreadsheet, which need a two-dimensional

array.

Declaration:

The syntax is same as for 1-D array but here 2 subscripts are used.

Syntax:

data_type array_name[rowsize][columnsize];

Rowsize specifies the no.of rows Columnsize

specifies the no.of columns.

Example:

int a[4][5];

This is a 2-D array of 4 rows and 5 columns. Here the first element of the array is a[0][0] and last

element of the array is a[3][4] and total no.of elements is 4*5=20.

col 0 col 1 col 2 col 3 col 4

row 0 a[0][0] a[0][1] a[0][2] a[0][3] a[0][4]

row 1 a[1][0] a[1][1] a[1][2] a[1][3] a[1][4]

row 2 a[2][0] a[2][1] a[2][2] a[2][3] a[2][4]

row 3 a[3][0] a[3][1] a[3][2] a[3][3] a[3][4]

Initialization:

2-D arrays can be initialized in a way similar to 1-D arrays.

Example:

int m[4][3]={1,2,3,4,5,6,7,8,9,10,11,12};

 Programming In C

IIIrd Sem. Computer Engg. Page 116

The values are assigned as follows:

m[0][0]:1 m[0][1]:2 m[0][2]:3

m[1][0]:4 m[1][1]:5 m[3][2]:6

m[2][0]:7 m[2][1]:8 m[3][2]:9

m[3][0]:10 m[3][1]:11 m[3][2]:12

The initialization of group of elements as follows:

int m[4][3]={{11},{12,13},{14,15,16},{17}};

The values are assigned as:

m[0][0]:1 1 m[0][1]:0 m[0][2]:0

m[1][0]:12 m[1][1]:13 m[3][2]:0

m[2][0]:14 m[2][1]:15 m[3][2]:16

m[3][0]:17 m[3][1]:0 m[3][2]:0

Note:

In 2-D arrays it is optional to specify the first dimension but the second dimension should always

be present.

Example:

int

m[][3]={

{1,10},

{2,20,200},

{3},

 Programming In C

IIIrd Sem. Computer Engg. Page 117

{4,40,400} };

Here the first dimension is taken 4 since there are 4 roes in the initialization list. A 2-D array is

known as matrix.

Processing:

For processing of 2-D arrays we need two nested for loops. The outer loop indicates the rows and

the inner loop indicates the columns.

Example:

int a[4][5];

a) Reading values in a

for(i=0;i<4;i++)

for(j=0;j<5;j++)

scanf(“%d”,&a[i][j]);

b) Displaying values of a

for(i=0;i<4;i++)

for(j=0;j<5;j++)

printf(“%d”,a[i][j]);

Example 1:

Write a C program to find sum of two matrices

#include <stdio.h>

#include<conio.h>

void main()

{

float a[2][2], b[2][2], c[2][2];

int i,j;

clrscr();

printf("Enter the elements of 1st matrix\n");

/* Reading two dimensional Array with the help of two for loop. If there is an array of 'n'

dimension, 'n' numbers of loops are needed for inserting data to array.*/

for(i=0;i<2;I++)

for(j=0;j<2;j++)

{

scanf("%f",&a[i][j]);

 Programming In C

IIIrd Sem. Computer Engg. Page 118

}

printf("Enter the elements of 2nd matrix\n");

for(i=0;i<2;i++)

for(j=0;j<2;j++)

{

scanf("%f",&b[i][j]);

}

/* accessing corresponding elements of two arrays. */

for(i=0;i<2;i++)

for(j=0;j<2;j++)

{

c[i][j]=a[i][j]+b[i][j]; /* Sum of corresponding elements of two arrays. */

}

/* To display matrix sum in order. */

printf("\nSum Of Matrix:");

for(i=0;i<2;++i)

{

for(j=0;j<2;++j)

printf("%f", c[i][j]);

printf("\n");

}

getch();

}

Example 2: Program for multiplication of two matrices

#include<stdio.h>

#include<conio.h>

int main()

{ int i,j,k;

int row1,col1,row2,col2,row3,col3;

int mat1[5][5], mat2[5][5], mat3[5][5];

clrscr();

printf(“\n enter the number of rows in the first matrix:”);

scanf(“%d”, &row1);

printf(“\n enter the number of columns in the first matrix:”);

scanf(“%d”, &col1);

printf(“\n enter the number of rows in the second matrix:”);

scanf(“%d”, &row2);

 Programming In C

IIIrd Sem. Computer Engg. Page 119

printf(“\n enter the number of columns in the second matrix:”);

scanf(“%d”, &col2);

if(col1 != row2)

{

printf(“\n The number of columns in the first matrix must be equal to the number of rows

in the second matrix ”);

getch();

exit();

}

row3= row1;

col3= col3;

printf(“\n Enter the elements of the first matrix”);

for(i=0;i<row1;i++)

{

for(j=0;j<col1;j++)

scanf(“%d”,&mat1[i][j]);

}

printf(“\n Enter the elements of the second matrix”);

for(i=0;i<row2;i++)

{

for(j=0;j<col2;j++)

scanf(“%d”,&mat2[i][j]);

}

for(i=0;i<row3;i++)

{

for(j=0;j<col3;j++)

{

mat3[i][j]=0;

for(k=0;k<col3;k++)

mat3[i][j] +=mat1[i][k]*mat2[k][j];

}

}

printf(“\n The elements of the product matrix are”):

for(i=0;i<row3;i++)

{

printf(“\n”);

 Programming In C

IIIrd Sem. Computer Engg. Page 120

for(j=0;j<col3;j++) printf(“\t

%d”, mat3[i][j]);

}

return 0;

}

Output:

Enter the number of rows in the first matrix: 2

Enter the number of columns in the first matrix: 2

Enter the number of rows in the second matrix: 2

Enter the number of columns in the second matrix: 2

Enter the elements of the first matrix

1 2 3 4

Enter the elements of the second matrix

5 6 7 8

The elements of the product matrix are

19 22

43 50

Example 3:

Program to find transpose of a matrix.

#include <stdio.h>

int main()

{

int a[10][10], trans[10][10], r, c, i, j;

printf("Enter rows and column of matrix: ");

scanf("%d %d", &r, &c);

printf("\nEnter elements of matrix:\n");

for(i=0; i<r; i++)

for(j=0; j<c; j++)

{

printf("Enter elements a%d%d: ",i+1,j+1);

scanf("%d", &a[i][j]);

}

/* Displaying the matrix a[][] */

printf("\n Entered Matrix: \n");

for(i=0; i<r; i++)

for(j=0; j<c; j++)

 Programming In C

IIIrd Sem. Computer Engg. Page 121

{

printf("%d ",a[i][j]);

if(j==c-1)

printf("\n\n");

}

/* Finding transpose of matrix a[][] and storing it in array trans[][]. */
for(i=0; i<r;i++)

for(j=0; j<c; j++)

{

trans[j][i]=a[i][j];

}

/* Displaying the array trans[][]. */
printf("\nTranspose of Matrix:\n");

for(i=0; i<c;i++)

for(j=0; j<r;j++)

{

printf("%d ",trans[i][j]);

if(j==r-1)

printf("\n\n");

}

return 0;

}

Output

Enter the rows and columns of matrix: 2 3

Enter the elements of

matrix: Enter elements a11:

1

Enter elements a12: 2

Enter elements a13: 9

Enter elements a21: 0

Enter elements a22: 4

Enter elements a23: 7

Entered matrix:

1 2 9

0 4 7

 Programming In C

IIIrd Sem. Computer Engg. Page 122

Transpose of matrix:

1 0

2 4

9 7

Multidimensional Array

More than 2-dimensional arrays are treated as multidimensional arrays.

Example:

int a[2][3][4];

Here a represents two 2-dimensional arrays and each of these 2-d arrays contains 3 rows and 4

columns.

The individual elements are:

a[0][0][0], a[0][0][1],a[0][0][2],a[0][1][0]…………a[0][3][2]

a[1][0][0],a[1][0][1],a[1][0][2],a[1][1][0]…………..a[1][3][2]

the total no. of elements in the above array is 2*3*4=24.

Initialization:

int a[2][4][3]={

{

{1,2,3},

{4,5},

{6,7,8},

{9}

},

{

{10,11},

{12,13,14},

 Programming In C

IIIrd Sem. Computer Engg. Page 123

{15,16},

{17,18,19}

}

}

The values of elements after this initialization are as:

a[0][0][0]:1 a[0][0][1]:2 a[0][0][2]:3

a[0][1][0]:4 a[0][1][1]:5 a[0][1][2]:0

a[0][2][0]:6 a[0][2][1]:7 a[0][2][2]:8

a[0][3][0]:9 a[0][3][1]:0 a[0][3][2]:0

a[1][0][0]:10 a[1][0][1]:11 a[1][0][2]:0

a[1][1][0]:12 a[1][1][1]:13 a[1][1][2]:14

a[1][2][0]:15 a[1][2][1]:16 a[1][2][2]:0

a[1][3][0]:17 a[1][3][1]:18 a[1][3][2]:19

Note:

The rule of initialization of multidimensional arrays is that last subscript varies most frequently

and the first subscript varies least rapidly.

Example:

#include<stdio.h>

main()

{

int d[5];

int i;

for(i=0;i<5;i++)

 Programming In C

IIIrd Sem. Computer Engg. Page 124

{

d[i]=i;

}

for(i=0;i<5;i++)

{

printf(“value in array %d\n”,a[i]);

}

}

pictorial representation of d will look like

d[0] d[1] d[2] d[3] d[4]

0 1 2 3 4

 Programming In C

IIIrd Sem. Computer Engg. Page 125

FUNDAMENTALS OF STRINGS

A string is a series of characters treated as a single unit. A string may include letters, digits and

various special characters such as +, -, *, / and $. String literals or string constants in C are

written in double quotation marks as follows:

―1000 Main Street‖ (a street address)

―(080)329-7082‖ (a telephone number)

―Kalamazoo, New York‖ (a city)

In C language strings are stored in array of char type along with null terminating character ‗\0‘

at the end.

When sizing the string array we need to add plus one to the actual size of the string to make

space for the null terminating character, ‗\0‘.

Syntax:

char fname[4];

The above statement declares a string called fname that can take up to 3 characters. It can be

indexed just as a regular array as well.

fname[]={„t‟,‟w‟,‟o‟};

character t w o \0

ASCII code 116 119 41 0

Generalized syntax is:-

char str[size];

when we declare the string in this way, we can store size-1 characters in the array because the

last character would be the null character. For example,

char mesg[10]; can store maximum of 9 characters.

 Programming In C

IIIrd Sem. Computer Engg. Page 126

If we want to print a string from a variable, such as four name string above we can do this.

e.g., printf(“First name:%s”,fname);

We can insert more than one variable. Conversion specification %s is used to insert a string

and then go to each %s in our string, we are printing.

A string is an array of characters. Hence it can be indexed like an array.

char ourstr[6] = ―EED‖;

– ourstr[0] is ‗E‘

– ourstr[1] is ‗E‘

– ourstr[2] is ‗D‘

– ourstr[3] is ‗\0‘

– ourstr[4] is ‗\0‘ – ourstr[5] is ‗\0‘

‗E‘ ‗E‘ ‗D‘ \0 ‗\0‘ ‗\0‘

ourstr[0] ourstr[1] ourstr[2] ourstr[3] ourstr[4] ourstr[5]

Reading strings:

If we declare a string by writing

char str[100];

then str can be read from the user by using three ways;

1. Using scanf() function

2. Using gets() function

3. Using getchar(), getch(), or getche() function repeatedly

The string can be read using scanf() by writing

scanf(“%s”,str);

Although the syntax of scanf() function is well known and easy to use, the main pitfall

with this function is that it terminates as soon as it finds a blank space. For example, if

 Programming In C

IIIrd Sem. Computer Engg. Page 127

the user enters Hello World, then str will contain only Hello. This is because the

moment a blank space is encountered, the string is terminated by the scanf() function.

Example:

char str[10];

printf(“Enter a string\n”);

scanf(“%s”,str);

The next method of reading a string a string is by using gets() function. The string can be read

by writing

gets(str);

gets() is a function that overcomes the drawbacks of scanf(). The gets() function

takes the starting address of the string which will hold the input. The string inputted

using gets() is automatically terminated with a null character.

Example:

char str[10];

printf(“Enter a string\n”);

gets(str);

The string can also be read by calling the getchar() repeatedly to read a sequence of

single characters (unless a terminating character is encountered) and simultaneously

storing it in a character array as follows:

int i=0;

char

str[10],ch;

getchar(ch

);

while(ch!=

‟\0‟)

{

 Programming In C

IIIrd Sem. Computer Engg. Page 128

str[i]=ch; // store the read character in

str i++;

getch(ch); // get another character

}

str[i]=‟\0‟; // terminate str with null character

Writing string

The string can be displayed on screen using three ways:

1. Using printf() function

2. Using puts() function

3. Using putchar() function repeatedly

The string can be displayed using pintf() by writing

printf(“%s”,str);

We can use width and precision specification along with %s. The width specifies the

minimum output field width and the precision specifies the maximum number of characters

to be displayed. Example:

printf(“%5.3s”,str);

this statement would print only the first three characters in a total field of five charaters;

also these three characters are right justified in the allocated width.

The next method of writing a string is by using the puts() function. The string can be displayed

by writing:

puts(str);

It terminates the line with a newline character (‗\n‘). It returns an EOF(-1) if an error occurs

and returns a positive number on success.

Finally the string can be written by calling the putchar() function repeatedly to print a

sequence

of single characters.

int i=0;

 Programming In C

IIIrd Sem. Computer Engg. Page 129

char str[10];

while(str[i]!=‟\0‟)

{

putchar(str[i]); // print the character on the

screen i++;

}

Example: Read and display a string

#include<stdio.h>

#include<conio.h>

void main()

{

char str[20];

clrscr();

printf(“\n Enter a string:\n”);

gets(str);

scanf(“The string is:\n”);

puts(str);

getch(); }

Output:

Enter a string:

vssut burla

The string is:

vssut burla

 Programming In C

IIIrd Sem. Computer Engg. Page 130

STRUCTURE AND UNION

Definition

A Structure is a user defined data type that can store related information together. The variable

within a structure are of different data types and each has a name that is used to select it from the

structure. C arrays allow you to define type of variables that can hold several data items of the

same kind but structure is another user defined data type available in C programming, which

allows you to combine data items of different kinds.

Structures are used to represent a record, Suppose you want to keep track of your books in a

library. You might want to track the following attributes about each book:

• Title

• Author

• Subject

• Book ID

Structure Declaration

It is declared using a keyword struct followed by the name of the structure. The variables of the

structure are declared within the structure.

Example:

Struct struct-name

{

data_type var-name;

data_type var-name;

};

 Programming In C

IIIrd Sem. Computer Engg. Page 131

Structure Initialization

Assigning constants to the members of the structure is

called initializing of structure. Syntax:

struct struct_name

{

data _type member_name1;

data _type member_name2;

} struct_var={constant1,constant2};

Accessing the Members of a structure

A structure member variable is generally accessed using a ‗.‘

operator.

S

y

n

t

a

x

:

s

t

r

c

u

t

_

v

a

r

.

m

e

m

b

e

r

_

n

a

m

e

;

The dot operator is used to

select a particular member of

the structure. To assign value

to the individual

Data members of the structure

variable stud, we write,

 Programming In C

IIIrd Sem. Computer Engg. Page 132

stud.roll=01;

stud.name=”Rahul”;

To input values for data members of the structure variable stud,

can be written as,

scanf(“%d”,&stud.roll);

scanf(„‟%s”,&stud.name);

To print the values of structure variable stud, can be written as:

printf(“%s”,stud.roll);

printf(“%f”,stud.name);

QUESTIONS

1. Write a program using structures to read and display the

information about an employee.

2. Write a program to read, display, add and subtract two

complex numbers.

3. Write a program to enter two points and then calculate the

distance between them.

NESTED STRUCTURES

LECTURE NOTE 25

 Programming In C

IIIrd Sem. Computer Engg. Page 133

The structure that contains another structure as its
members is called a nested structure or a
structure within a structure is called nested structure.

The structure should be declared separately and then be

grouped into high level structure.

1. Write a program to read and display the

information of all the students in the class

using nested structure.

Passing Structures through pointers

Pointer to a structure is a variable that holds the

address of a structure. The syntax to declare pointer

to a structure can be given as:

strcut struct_name *ptr;

To assign address of stud to the pointer using

address operator(&) we would write

ptr_stud=&stud;

To access the

members of the

structure (->)

operator is used.

for example

Ptr_stud->name=Raj;

SELF REFERENTIAL STRUCTURE

Self –referential structures are those structures that

contain a reference to data of its same type as that of

structure.

Example

struct node

{

int val;

struct node*next;

};

Pointers to Structures

You can define pointers to

structures in very similar

way as you define pointer to

any other variable as follows:

struct books *struct_pointer;

Now, you can store the

address of a structure

variable in the above

defined pointer variable.

To find the address of a

structure variable, place

the & operator before the

structure's name as

follows:

struct_pointer = &book1;

To access the members of a

structure using a pointer to

that structure, you must use

the ->

operator as follows:

struct_pointer->title;

 Programming In C

IIIrd Sem. Computer Engg. Page 134

1 .Write a program to display, add and subtract two

time defined using hour, minutes and values

of seconds.

2. Write a program, using pointer to structure, to

initialize the members in the structure. Use functions to

print the students information.

3. Write a program using an array of pointers to a

structure to read and display the data of a student.

 Programming In C

IIIrd Sem. Computer Engg. Page 135

UNION

Union is a collection of variables of different data types, in case of union information can only be

stored In one field at any one time. A union is a special data type available in C that enables you

to store different data types in the same memory location. You can define a union with many

members, but only one member can contain a value at any given time. Unions provide an efficient

way of using the same memory location for multi-purpose.

Declaring Union

union union-name

{

data_type var-name;

data_type var-name;

};

The union tag is optional and each member definition is a normal variable definition, such as int

i; or float f; or any other valid variable definition. At the end of the union's definition, before the

final semicolon, you can specify one or more union variables but it is optional. Here is the way

you would define a union type named Data which has the three members i, f, and str. Now, a

variable of Data type can store an integer, a floating-point number, or a string of characters. This

means that a single variable ie. same memory location can be used to store multiple types of data.

You can use any built-in or user defined data types inside a union based on your requirement.

The memory occupied by a union will be large enough to hold the largest member of the union.

For example, in above example Data type will occupy 20 bytes of memory space because this is

the maximum space which can be occupied by character string. Following is the example which

will display total memory size occupied by the above union:

Accessing a Member of a Union

#include <stdio.h>

#include <string.h>

union Data

{

 Programming In C

IIIrd Sem. Computer Engg. Page 136

int i;

float f;

char str[20];

};

int main()

{

union Data data;

data.i = 10;

data.f = 220.5;

strcpy(data.str, "C Programming");

printf("data.i : %d\n", data.i);

printf("data.f : %f\n", data.f);

printf("data.str : %s\n", data.str);

return 0;

}

Dot operator can be used to access a member of the union . he member access operator is coded

as a period between the union variable name and the union member that we wish to access. You

would use union keyword to define variables of union type. Following is the example to explain

usage of union:

Exercises:

1. Write a program to define a union and a structure both having exactly the same members.

Using the sizeof operator, print the size of structure variable as well as union variable and

comment on the result.

2. Write a program to define a structure for a hotel that has the member‘s mane, address,

grade, number of rooms, and room charges. Write a function to print the names of the

hotels in a particular grade. Also write a function to print names of a hotel that have room

charges less than the specified value.

 Programming In C

IIIrd Sem. Computer Engg. Page 137

POINTERS

A pointer is a variable that contains the address of a variable. Pointers are much used in C, partly

because they are sometimes the only way to express a computation, and partly because they

usually lead to more compact and efficient code than can be obtained in other ways. Pointers and

arrays are closely related; this chapter also explores this relationship and shows how to exploit it.

Pointers have been lumped with the goto statement as a marvelous way to create impossible to

understand programs. This is certainly true when they are used carelessly, and it is easy to create

pointers that point somewhere unexpected. With discipline, however, pointers can alsobe used to
achieve clarity and simplicity. This is the aspect that we will try to illustrate.

The main change in ANSI C is to make explicit the rules about how pointers can be manipulated,

in effect mandating what good programmers already practice and good compilers already

enforce. In addition, the type void * (pointer to void) replaces char * as the proper type for a

generic pointer.

Pointers and Addresses
Let us begin with a simplified picture of how memory is organized. A typical machine has an

array of consecutively numbered or addressed memory cells that may be manipulated individually

or in contiguous groups. One common situation is that any byte can be a char, a pair of one-byte

cells can be treated as a short integer, and four adjacent bytes form a long. A pointer is a group

of cells (often two or four) that can hold an address. So if c is a char and p is a pointer that

points to it, we could represent the situation this way:

The unary operator &gives the address of an object, so the statement

p = &c;

assigns the address of c to the variable p, and p is said to ̀ `point to'' c. The &operator only

applies to objects in memory: variables and array elements. It cannot be applied to expressions,

constants, or register variables.

The unary operator * is the indirection or dereferencing operator; when applied to a pointer, it

accesses the object the pointer points to. Suppose that x and y are integers and ipis a pointer to

int. This artificial sequence shows how to declare a pointer and how to use &and *:

 Programming In C

IIIrd Sem. Computer Engg. Page 138

int x = 1, y = 2, z[10];

int *ip;

ip = &x;

y = *ip;

*ip = 0;

ip = &z[0];

The declaration of x, y, and z are what we've seen all along. The declaration of the pointer ip.

int *ip;

is intended as a mnemonic; it says that the expression *ipis an int. The syntax of the declaration

for a variable mimics the syntax of expressions in which the variable might appear. This
reasoning applies to function declarations as well. For example,

double *dp, atof(char *);

says that in an expression *dpand atof(s) have values of double, and that the argument of

atofis a pointer to char.

You should also note the implication that a pointer is constrained to point to a particular kind of

object: every pointer points to a specific data type. If ippoints to the integer x, then *ipcan occur

in any context where x could, so

*ip = *ip + 10;

increments *ip by 10.

The unary operators * and &bind more tightly than arithmetic operators, so the assignment

y = *ip + 1

takes whatever ippoints at, adds 1, and assigns the result to y, while

*ip += 1

increments what ippoints to, as do

++*ip and (*ip)++

The parentheses are necessary in this last example; without them, the expression would increment

ip instead of what it points to, because unary operators like * and ++ associate right to left.

 Programming In C

IIIrd Sem. Computer Engg. Page 139

Finally, since pointers are variables, they can be used without dereferencing. For example, if iq is

another pointer to int,

iq = ip

copies the contents of ipinto iq, thus making iqpoint to whatever ippointed to.

Pointers and Function Arguments
Since C passes arguments to functions by value, there is no direct way for the called function to

alter a variable in the calling function. For instance, a sorting routine might exchange two out-

oforder arguments with a function called swap. It is not enough to write

swap(a, b);

where the swap function is defined as

void swap(int x, int y)

{

int temp;

temp = x;

x = y;

y = temp;

}

Because of call by value, swap can't affect the arguments a and b in the routine that called it.

The function above swaps copies of a and b. The way to obtain the desired effect is for the

calling program to pass pointers to the values to be changed:

swap(&a, &b);

Since the operator & produces the address of a variable, &a is a pointer to a. In swap itself, the

parameters are declared as pointers, and the operands are accessed indirectly through them.

void swap(int *px, int *py) /* interchange *px and *py */

{

int temp;

temp = *px;

*px = *py;

*py = temp;

}

 Programming In C

IIIrd Sem. Computer Engg. Page 140

Pointer arguments enable a function to access and change objects in the function that called it. As

an example, consider a function getint that performs free-format input conversion by breaking a

stream of characters into integer values, one integer per call. getint has to return the value it

found and also signal end of file when there is no more input. These values have to be passed

back by separate paths, for no matter what value is used for EOF, that could also be the value of an

input integer.

One solution is to have getint return the end of file status as its function value, while using a

pointer argument to store the converted integer back in the calling function. This is the scheme

used by scanfas well

The following loop fills an array with integers by calls to getint:

int n, array[SIZE], getint(int *);

for (n = 0; n < SIZE &&getint(&array[n]) != EOF; n++)

;

Each call sets array[n] to the next integer found in the input and increments n. Notice that it is

essential to pass the address of array[n] to getint. Otherwise there is no way for getint to

communicate the converted integer back to the caller.

Our version of getintreturns EOF for end of file, zero if the next input is not a number, and a

positive value if the input contains a valid number.

#include <ctype.h>

int getch(void);

void ungetch(int);

int getint(int *pn)

{

int c, sign;

while (isspace(c = getch()));

if (!isdigit(c) && c != EOF && c != '+' && c != '-')

{

ungetch(c); return 0;

}

sign = (c == '-') ? -1 : 1;

if (c == '+' || c == '-')

c = getch();

for (*pn = 0; isdigit(c), c = getch())

*pn = 10 * *pn + (c - '0');

*pn *= sign;

if (c != EOF)

ungetch(c);

return c;

}

 Programming In C

IIIrd Sem. Computer Engg. Page 141

Throughout getint, *pnis used as an ordinary intvariable. We have also used getchand

ungetchso the one extra character that must be read can be pushed back onto the input.

