# Chapter 1 INTRODUCTION TO WIRELESS COMMUNICATION SYSTEMS



# 1.1 Evolution of Mobile Radio Communications

- Major Mobile Radio Systems
  - 1934 Police Radio uses conventional AM mobile communication system.
  - 1935 Edwin Armstrong demonstrate FM
  - 1946 First public mobile telephone service push-to-talk
  - 1960 Improved Mobile Telephone Service, IMTS full duplex
  - 1960 Bell Lab introduce the concept of Cellular mobile system
  - 1968 AT&T propose the concept of Cellular mobile system to FCC.
  - 1976 Bell Mobile Phone service, poor service due to call blocking
  - 1983 Advanced Mobile Phone System (AMPS), FDMA, FM
  - 1991 Global System for Mobile (GSM), TDMA, GMSK
  - 1991 U.S. Digital Cellular (USDC) IS-54, TDMA, DQPSK
  - 1993 IS-95, CDMA, QPSK, BPSK

#### 1.2 Example of Mobile Radio Systems

- · Examples
  - Cordless phone
  - Remote controller
  - Hand-held walkie-talkies
  - Pagers
  - Cellular telephone
  - Wireless LAN
- · Mobile any radio terminal that could be moves during operation
- · Portable hand-held and used at walking speed
- · Subscriber mobile or portable user

- · Classification of mobile radio transmission system
  - Simplex: communication in only one direction
  - Half-duplex: same radio channel for both transmission and reception (push-to-talk)
  - Full-duplex: simultaneous radio transmission and reception (FDD, TDD)
- Frequency division duplexing uses two radio channel
  - Forward channel: base station to mobile user
  - Reverse channel: mobile user to base station
- Time division duplexing shares a single radio channel in time.





|                 | Channel Number       | Center Frequency (MHz) |
|-----------------|----------------------|------------------------|
| Reverse Channel | $1 \le N \le 799$    | 0.030N + 825.0         |
| •               | $990 \le N \le 1023$ | 0.030(N-1023) + 825.0  |
| Forward Channe  | $1 \le N \le 799$    | 0.030N + 870.0         |
|                 | $990 \le N \le 1023$ | 0.030(N-1023)+870.0    |
|                 | (Channels 800 - 989  | are unused)            |

#### 1.2.2 Paging Systems

- · Conventional paging system send brief messages to a subscriber
- · Modern paging system: news headline, stock quotations, faxes, etc.
- · Simultaneously broadcast paging message from each base station (simulcasting)
- · Large transmission power to cover wide area.



#### 1.2.3 Cordless Telephone System

- · Cordless telephone systems are full duplex communication systems.
- · First generation cordless phone
  - in-home use
  - communication to dedicated base unit
  - few tens of meters
- · Second generation cordless phone
  - outdoor
  - combine with paging system
  - few hundred meters per station



#### 1.2.4 Cellular Telephone Systems

- Provide connection to the PSTN for any user location within the radio range of the system.
- · Characteristic
  - Large number of users
  - Large Geographic area
  - Limited frequency spectrum
  - Reuse of the radio frequency by the concept of "cell".

Basic cellular system: mobile stations, base stations, and mobile switching center.



- Communication between the base station and mobiles is defined by the standard common air interface (CAI)
  - forward voice channel (FVC): voice transmission from base station to mobile
  - reverse voice channel (RVC): voice transmission from mobile to base station
  - forward control channels (FCC): initiating mobile call from base station to mobile
  - reverse control channel (RCC): initiating mobile call from mobile to base station

- · Original Mobile Telephones
  - One transmitter/receiver
  - Limited number of channels
  - For good service can support about 20 subscribers per channel (rough rule of thumb)





- · Divide Region into Cells
  - One *cellsite* (transmitter/receiver) per cell



- Channels can be reused in non-adjacent cells





#### · Channel Reuse



- Without *channel reuse*, you can serve only about 20 subscribers per channel for good service
- Rough rule of thumb
- Otherwise, the system will not be available too often when people want to call or receive calls



- · Channel Reuse Rule
  - How many times can we reuse each channel in an area?
  - Channel reuse factor = Number of cells / 7
  - If 20 cells, reuse factor is about 3 (round off)
  - Can reuse each channel about 3 times
  - Rough rule of thumb



- · Capacity Calculation
  - If 100 channels and 15 cells
  - 100 channels
  - x 20 subscribers per channel



- x 15/7 channel reuse factor



- = about 4,000 subscribers (100 x 20 x 2)



#### Handoffs

- When you move to another cell within the same system, you get a *handoff* 
  - You are transferred automatically to that cell's cellsite





# Roaming



- · Roaming is when you take your cellphone to another city
  - Use it there to send and receive



- Not always possible technically because of incompatible cellular technology
- May be limited procedurally because of high rates of cellular fraud in some areas



- Don't confuse this with *handoff*, which takes place within a cellular system between cells



#### Control



- · Mobile Telephone Switching Office
  - Controls cellsites, handoffs, etc.
  - Calls go to/from *MTSO*



Connects to POP to link to traditional telephone
 (wireline) carriers





### Placing a Call



- · Enter number, hit send
- · Cellphone broadcasts request
- · Several cellsites receive, send to MTSO
- MTSO assigns cellphone to cellsite where signal is loudest
- · MTSO sends message to cellphone via that cellsite, telling the phone what incoming, outgoing channels to use



# Receiving a Call



- MTSO has each cellsite broadcast cellphone's ID number
- · Cellphone transmits a response
- · Responses from cellsites go to MTSO
- · MTSO selects cellsite where signal is loudest
- MTSO sends message via the cellsite to cellphone, giving channels and telling the cellphone to ring



#### First Generation Cellular



- Analog or Digital Operation
  - Initially analog; U.S. States initially was analog using the *AMPS* standard
    - · Limited use of digital *Cellular Digital Packet Data* (CDPD) standard
  - Europe and the rest of the world started with a large number of incompatible analog systems but settled on the digital *GSM* standard





#### First-Generation Cellular



- · Large Cells
  - Usually only 20-40 per city
  - Limits channel reuse



- · Limited Number of Channels
  - In U.S., 832 two-way channels
- No Compression



- Each voice signal required a full two-way channel



# First-Generation Cellular

- · How Many Subscribers Can You Support?
  - 20 cells



- Channel reuse is about 3 (20/7)
- 832 channels
- With channel reuse, 2,496 effective channels
- 20 users per available channel



- So only about 50,000 subscribers per city
- Engineering tricks can extend, but only somewhat



- · Personal Communication Service (PCS)
  - Or Personal Communication Network (PCN)
- · More channels



- About 2,500
- · Smaller cells permit more channel reuse



- Don't just say "smaller cells;" be explicit about channel reuse
- Compression of around 3:1
  - Supports more subscribers per channel



- · Digital
  - Cleaner signal
  - Paging and other digital services
  - Internet access



# Potential System Capacity (Roughly)

| • | Category                  | 1st Gen | 2nd Gen   |
|---|---------------------------|---------|-----------|
| • | Cells/City                | 30      | 100       |
| • | Channel reuse (cells/7)   | ~4      | ~14       |
| • | Channels                  | 800     | 2,500     |
| • | Effective channels        | 3,200   | 35,000    |
| • | With compression          | *3,200  | 105,000   |
| • | Subscribers (x20/channel) | 64,000  | 2,000,000 |

\*No compression in 1st generation



- · PCS Cellphones
  - Do not have to transmit as far because cells are smaller
    - Inverse cube law--if triple distance, 33 or 27 times the power required
    - · Cellphones can be less expensive because use less power



#### · PCS Cellphones



- Large number of possible subscribers removes scarcity cost penalties
- But vendors try to avoid simple price competition by offering more services made possible by digital technology



- Most of World
- Standardizing on DCS Technology
  - Based on GSM and usually called GSM
  - U.S.

- FCC did not specify a standard!
   Different carriers use different technologies
  - Some have standardized on GSM
  - Your cellphone may not work with another carrier
  - Limits roaming



# Generations: Recap

Analog/Digital

Cells

Channels (Approx.)

Compression

U.S. Standardization

**International Standards** 

| 1st         | 2nd     |  |
|-------------|---------|--|
| Both<br>A&D | Digital |  |
| Large       | Small   |  |
| 800         | 2500    |  |
| No          | Yes     |  |
| AMPS        | Poor    |  |
| GSM         | DCS     |  |





- · Data
  - Initially limited to about 10 kbps
  - 100 kbps coming over second-generation systems in some countries



## Third-Generation (3G)

- Smarter Devices
  - Devices will have the power of a small PC
- Greater Number of Uses
  - Data, including internet access
  - Graphics and even video
- · International Mobile Telecommunications (IMT)
  - European-led standard for 3G generation cellular





**1**G

#### 1<sup>ST</sup> GENERATION

wireless network

- Basic voice service
- Analog-based protocols



**2G** 

#### **2**<sup>ND</sup> **GENERATION**

wireless network

- Designed for voice
- Improved coverage and capacity
- First digital standards (GSM, CDMA)



**3G** 

#### **3<sup>RD</sup> GENERATION**

wireless network

- Designed for voice with some data consideration (multimedia, text, internet)
- First mobile broadband



4G

#### 4<sup>TH</sup> GENERATION

wireless network

- Designed primarily for data
- IP-based protocols (LTE)
  - True mobile broadband





OR SPEED

in kilobits per second

**2.4** *kbps* 

Ε

**64** *kbps* 

**2,000** kbps

100,000  $^{kbps}$ 

#### CELLULAR CONCEPT

"Provide additional radio capacity with no additional increase in radio spectrum"

#### INTRODUCTION

- Early mobile radio system was to achieve a large coverage areas by using high powered transmitter with an antenna mounted on a tall tower
- In this case it is impossible to reuse those same frequencies throughout the system
- · Since any attempts to achieve frequency reuse would result in interference

#### Cont..

- Cellular concept is a system level idea which calls for replacing a single, high power transmitter with low power small transmitters with each providing coverage to only a small portion of service area
- Each base station is allocated a portion of total no of channels available to entire system
- Nearby base station are assigned different groups of channels so that all the available channels are assigned to a relatively small no. of neighboring base stations
- Nearby BS are assigned different groups of channel so that interference bt. BS is minimized

#### THE CELLULAR CONCEPT



- · footprint of a cell actual radio coverage
- omni-directional antenna v.s. directional antenna

#### CELLULAR NETWORK

segmentation of the area into cells



- use of several carrier frequencies
- not the same frequency in adjoining cells
- cell sizes vary from some 100 m up to 35 km depending on user density, geography, transceiver power etc.
- hexagonal shape of cells is idealized (cells overlap, shapes depend on geography)
- if a mobile user changes cells handover of the connection to the neighbor cell

#### FREQUENCY REUSE

- Each cellular base station is allocated a group of radio channels within a small geographic area called a *cell*.
- · Neighboring cells are assigned different channel groups.
- By limiting the coverage area to within the boundary of the cell, the channel groups may be reused to cover different cells.
- · Keep interference levels within tolerable limits.
- · Frequency reuse or frequency planning

"The design process of selecting and allocating channel groups for all of the cellular base station within a system is FREQUENCY REUSE/PLANNING"

- · Consider a cellular system which has a total of *S* duplex channels.
- Each cell is allocated a group of  $\underline{k}$  channels,  $k \in S$ .
- The  $\underline{S}$  channels are divided among  $\underline{N}$  cells.
- The total number of available radio channels

#### S kN

- The N cells which use the complete set of channels is called *cluster*.
- The cluster can be repeated  $\underline{M}$  times within the system. The total number of channels,  $\underline{C}$ , is used as a measure of capacity

#### C MkN MS

- The capacity is directly proportional to the number of replication  $\underline{M}$ .
- The cluster size, N, is typically equal to 4, 7, or 12.
- Small N is desirable to maximize capacity.
- The frequency reuse factor is given by 1/N

- · Hexagonal geometry has
  - exactly six equidistance neighbors
  - the lines joining the centers of any cell and each of its neighbors are separated by multiples of 60 degrees.
- Only certain cluster sizes and cell layout are possible.
- The number of cells per cluster, N, can only have values which satisfy

$$N i^2 ij j^2$$

· Co-channel neighbors of a particular cell, ex, i=3 and j=2.

#### CLUSTER SIZES AND CELL LAYOUT



Eg for i=2, j=1

The factor N is called the cluster size and is given N=i2+ij+j2

#### CLUSTER SIZES AND CELL LAYOUT



## CELL REUSE EXAMPLE (N=19)



To find the nearest co-channel neighbor of a particular cell

- Move 'i' cells along any chain of hexagons
- Then turn 60 degrees counter-clockwise and
- Move 'j' cells.

#### **ADVANTAGES**

- · Solves the problem of spectral congestion and user capacity.
- · Offer very high capacity in a limited spectrum without major technological changes.
- · Reuse of radio channel in different cells.
- Enable a fix number of channels to serve an arbitrarily large number of users by reusing the channel throughout the coverage region.

## CAPACITY EXPANSION IN CELLULAR SYSTEM

Techniques to provide more channels per coverage area is by

- · Cell splitting
- Cell sectoring
- Coverage zone approches

#### **CELL SPLITTING**

- Cell splitting increases the capacity of cellular system since it increases the number of times the channel are reused
- · Cell splitting defining new cells which have smaller radius than orginal cells by installing these smaller cells called MICROCELLS between existing cells
- · Capacity increases due to additional number of channels per unit area

"Cell splitting is process of subdividing a congested cell into smaller cells each with its own base station(with corresponding reduction in antenna height and tx power)"

#### **CELL SPLITTING**

Split congested cell into smaller cells.

- Preserve frequency reuse plan.
- Reduce transmission power.

Reduce R to R/2





- Transmission power reduction from  $P_{t1}$  to  $P_{t2}$
- · Examining the receiving power at the new and old cell boundary

$$P_r$$
[at old cell boundary]  $P_{t1}R^n$   
 $P_r$ [at new cell boundary]  $P_{t2}(R/2)^n$ 

• If we take n = 4 (path loss) and set the received power equal to each other

$$P_{t2}$$
  $\frac{P_{t1}}{16}$ 

- The transmit power must be reduced by 12 dB in order to fill in the original coverage area.
- · Problem:

if only part of the cells are splited

- Different cell sizes will exist simultaneously
- · Handoff issues high speed and low speed traffic can be simultaneously accommodated

#### **CELL SPLITTING**



- · Splitting cells in each CELL
- · Antenna downtiliting

Illustration of cell splitting within a 3 km by 3 km square

#### 2.7.2 Sectoring

- Decrease the *co-channel interference* and keep the cell radius R unchanged
  - Replacing single omni-directional antenna by several directional antennas
  - Radiating within a specified sector





#### Interference Reduction



#### 2.7.3 Microcell Zone Concept

- Antennas are placed at the outer edges of the cell
- Any channel may be assigned to any zone by the base station
- Mobile is served by the zone with the strongest signal.
- · Handoff within a cell
  - No channel reassignment
  - Switch the channel to a different zone site
- · Reduce interference
  - Low power transmitters are employed





#### Channel Assignment Strategies

- · Frequency reuse scheme
  - increases capacity
  - minimize interference
- · Channel assignment strategy
  - fixed channel assignment
  - dynamic channel assignment
- Fixed channel assignment
  - each cell is allocated a predetermined set of voice channel
  - any new call attempt can only be served by the unused channels
  - the call will be *blocked* if all channels in that cell are occupied
- · Dynamic channel assignment
  - channels are not allocated to cells permanently.
  - allocate channels based on request.
  - reduce the likelihood of blocking, increase capacity.

| Analog                                                                       | Digital                                                                                                                                               |  |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Less bandwidth(Advantage)                                                    | Large bandwidth(Disadvantage)                                                                                                                         |  |
| More accurate (Advantage)                                                    | Less accurate due to the Quantization<br>error that can not be avoided or corrected<br>(Disadvantage)                                                 |  |
| Low noise immunity ( <b>Disadvantage</b> ).                                  | High noise immunity as the amplitude of<br>the digital has two levels only and<br>channel coding (error correcting codes)<br>can be used. (Advantage) |  |
| Low level of security. (Disadvantage)                                        | High level of security as you can use<br>Encryption (Ciphering) and<br>Authentication. (Advantage)                                                    |  |
| No signal conditioning and processing are used ( <b>Disadvantage</b> )       | Support complex signal conditioning and processing techniques such as source coding, encryption, and equalization((Advantage)                         |  |
| Low QOS. (Disadvantage)                                                      | High QOS. (Advantage)                                                                                                                                 |  |
| You can use FDM only(Disadvantage)                                           | You can use FDM, TDM, CDM, OFDM multiplexing techniques.  (Advantage)                                                                                 |  |
| In mobile communications, analog supports voice service only. (Disadvantage) | In mobile communications, digital<br>supports voice, SMS, data (you can<br>access the internet), images and video<br>call. (Advantage)                |  |
| More difficult to design than Digital. (Disadvantage)                        | Easily designed using software (Advantage).                                                                                                           |  |

# Multiple Access Techniques for Wireless Communication



FDM A TDM A

#### Introduction

- many users at same time
- · share a finite amount of radio spectrum
- high performance
- duplexing generally required
- frequency domain
- time domain

## Frequency division duplexing (FDD)

- two bands of frequencies for every user
- forward band
- reverse band
- duplexer needed
- frequency seperation between forward band and reverse band is constant

## Time division duplexing (TDD)

- uses time for forward and reverse link
- multiple users share a single radio channel
- forward time slot
- · reverse time slot
- no duplexer is required

## Multiple Access Techniques

- Frequency division multiple access (FDMA)
- Time division multiple access (TDMA)
- Code division multiple access (CDMA)
- Space division multiple access (SDMA)
- grouped as:
- narrowband systems
- wideband systems

## Narrowband systems

- · large number of narrowband channels
- usually FDD
- Narrowband FDMA
- Narrowband TDMA
- FDMA/FDD
- FDMA/TDD
- TDMA/FDD
- TDMA/TDD

## Logical separation FDMA/FDD

| user 1 - | forward channel |
|----------|-----------------|
|          | reverse channel |
|          |                 |
|          |                 |
|          |                 |
| user n — | forward channel |
|          | reverse channel |

## Logical separation FDMA/TDD

| user 1          |                 |  |  |
|-----------------|-----------------|--|--|
| forward channel | reverse channel |  |  |
|                 |                 |  |  |
|                 |                 |  |  |
| user n          |                 |  |  |
| forward channel | reverse channel |  |  |
|                 |                 |  |  |

## Logical separation TDMA/FDD



## Logical separation TDMA/TDD

| use     | er 1    | user        | n       |
|---------|---------|-------------|---------|
| forward | reverse | <br>forward | reverse |
| channel | channel | channel     | channel |

## Wideband systems

- large number of transmitters on one channel
- TDMA techniques
- CDMA techniques
- FDD or TDD multiplexing techniques
- TDMA/FDD
- TDMA/TDD
- CDMA/FDD
- CDMA/TDD

## Logical separation CDMA/FDD

| user 1          |                 |  |
|-----------------|-----------------|--|
| forward channel | reverse channel |  |
|                 |                 |  |
|                 |                 |  |
| user n          |                 |  |
| forward channel | reverse channel |  |

code

## Logical separation CDMA/TDD

| user 1           |                  |  |
|------------------|------------------|--|
| forward channel  | reverse channel  |  |
|                  |                  |  |
|                  |                  |  |
| user n           |                  |  |
| forward channel  | reverse channel  |  |
| Torward Chainier | TO VOISO CHAIMCI |  |

code

## Multiple Access Techniques in use

Multiple Access

Cellular System

Technique

Advanced Mobile Phone System (AMPS) FDMA/FDD

Global System for Mobile (GSM) TDMA/FDD

US Digital Cellular (USDC) TDMA/FDD

Digital European Cordless Telephone (DECT) FDMA/TDD

US Narrowband Spread Spectrum (IS-95) CDMA/FDD

## Frequency division multiple access FDMA

- one phone circuit per channel
- idle time causes wasting of resources
- simultaneously and continuously transmitting
- usually implemented in narrowband systems
- for example: in AMPS is a FDMA bandwidth of 30 kHz implemented

## FDMA compared to TDMA

- fewer bits for synchronization
- fewer bits for framing
- higher cell site system costs
- higher costs for duplexer used in base station and subscriber units
- FDMA requires RF filtering to minimize adjacent channel interference

#### Nonlinear Effects in FDMA

- many channels same antenna
- for maximum power efficiency operate near saturation
- near saturation power amplifiers are nonlinear
- nonlinearities causes signal spreading
- intermodulation frequencies

#### Nonlinear Effects in FDMA

- IM are undesired harmonics
- interference with other channels in the FDMA system
- decreases user C/I decreases performance
- interference outside the mobile radio band: adjacent-channel interference
- RF filters needed higher costs

### Number of channels in a FDMA system

$$N = \frac{B_{t} - B_{guard}}{B_{c}}$$

- N ... number of channels
- Bt ... total spectrum allocation
- Bguard ... guard band
- Be ... channel bandwidth

## Example: Advanced Mobile Phone System

- AMPS
- FDMA/FDD
- analog cellular system
- 12.5 MHz per simplex band Bt
- Bguard = 10 kHz; Bc = 30 kHz

$$N = \frac{12.5E6 - 2*(10E3)}{30E3} = 416 \text{ channels}$$

# Time Division Multiple Access

- time slots
- one user per slot
- buffer and burst method
- noncontinuous transmission
- · digital data
- digital modulation

# Repeating Frame Structure



The frame is cyclically repeated over time.

### Features of TDMA

- a single carrier frequency for several users
- transmission in bursts
- low battery consumption
- handoff process much simpler
- FDD: switch instead of duplexer
- very high transmission rate
- high synchronization overhead
- guard slots necessary

### Number of channels in a TDMA system

$$N = \frac{m^*(B_{tot} - 2^*B_{guard})}{B_c}$$

- N ... number of channels
- m ... number of TDMA users per radio channel
- Btot ... total spectrum allocation
- Bguard ... Guard Band
- Be ... channel bandwidth

### Example: Global System for Mobile (GSM)

- TDMA/FDD
- forward link at  $B_{tot} = 25 \text{ MHz}$
- radio channels of  $B_c = 200 \text{ kHz}$
- if m = 8 speech channels supported, and
- if no guard band is assumed:

$$N = \frac{8*25E}{200E3} = 1000 \text{ simultaneous users}$$

- percentage of transmitted data that contain information
- frame efficiency If
- usually end user efficiency  $< \Box f$ ,
- because of source and channel coding
- How get If?

# Repeating Frame Structure



The frame is cyclically repeated over time.

$$b_{OH} = N_r * b_r + N_t * b_p + N_t * b_g + N_r * b_g$$

- boh ... number of overhead bits
- Nr ... number of reference bursts per frame
  - br ... reference bits per reference burst
- Nt ... number of traffic bursts per frame
  - bp ... overhead bits per preamble in each slot
- bg ... equivalent bits in each guard time intervall

$$b_T = T_f * R$$

- bt ... total number of bits per frame
- Tf ... frame duration
- R ... channel bit rate

$$\Box_{\rm f} = (1-b_{\rm OH}/b_{\rm T})*100\%$$

- If ... frame efficiency
- boн ... number of overhead bits per frame
- bt ... total number of bits per frame

### Space Division Multiple Access

- Controls radiated energy for each user in space
- using spot beam antennas
- base station tracks user when moving
- · cover areas with same frequency:
- TDMA or CDMA systems
- cover areas with same frequency:
- FDMA systems

### Space Division Multiple Access

primitive applications are "Sectorized antennas"



in future adaptive
antennas simultaneously
steer energy in the
direction of many users at
once



### Reverse link problems

- general problem
- different propagation path from user to base
- dynamic control of transmitting power from each user to the base station required
- limits by battery consumption of subscriber units
- possible solution is a filter for each user

## Solution by SDMA systems

- adaptive antennas promise to mitigate reverse link problems
- · limiting case of infinitesimal beamwidth
- · limiting case of infinitely fast track ability
- thereby unique channel that is free from interference
- all user communicate at same time using the same channel

## Disadvantage of SDMA

- perfect adaptive antenna system:
   infinitely large antenna needed
- · compromise needed

#### SDMA and PDMA in satellites

- INTELSAT IVA
- SDMA dual-beam receive antenna
- simultaneously access from two different regions of the earth



#### SDMA and PDMA in satellites

- COMSTAR 1
- PDMA
- separate antennas
- simultaneouslyaccess from sameregion



#### SDMA and PDMA in satellites

- INTELSAT V
- PDMA and SDMA
- two hemisphericcoverages by SDMA
- two smaller beam zones by PDMA
- orthogonal polarization



# Capacity of Cellular Systems

- channel capacity: maximum number of users in a fixed frequency band
- radio capacity: value for spectrum efficiency
- reverse channel interference
- forward channel interference
- How determine the radio capacity?

### Co-Channel Reuse Ratio Q

$$Q=D/R$$

- · Q ... co-channel reuse ratio
- D ... distance between two co-channel cells
- R ... cell radius

#### Forward channel interference

- cluster size of 4
- Do ... distance serving station to user
- DK ... distance co-channel base station to user



### Carrier-to-interference ratio C/I

M closest co-channels cells cause first order interference

$$\frac{C}{I} = \frac{D_0^{-n0}}{\sum_{k=1}^{M} D_K^{-nk}}$$

n<sub>0</sub> ... path loss exponent in the desired cell n<sub>k</sub> ... path loss exponent to the interfering base station

### Carrier-to-interference ratio C/I

- Assumption:
- just the 6 closest stations interfere
- all these stations have the same distance D
- all have similar path loss exponents to no

$$\frac{C}{I} = \frac{D_0}{6*D}^{-n}$$

#### Worst Case Performance

- $\overline{\text{maximum interference at D}_0 = R$
- (C/I)min for acceptable signal quality
- following equation must hold:

$$1/6 * (R/D) = (C/I)_{min}$$

### Co-Channel reuse ratio Q

$$Q = D/R = (6*(C/I)_{min})^{1/n}$$

- D... distance of the 6 closest interfering base stations
- R ... cell radius
  - (C/I)min ... minimum carrier-to-interference ratio
    - n ... path loss exponent

## Radio Capacity m

$$m = \frac{B_t}{B_c * N}$$
 radio channels/cell

- Bt ... total allocated spectrum for the system
- Bc ... channel bandwidth
- N ... number of cells in a complete frequency reuse cluster

## Radio Capacity m

• N is related to the co-channel factor Q by:

$$Q = (3*N)^{1/2}$$

$$m = \frac{B_t}{B_c * (Q^2/3)} = \frac{B_t}{B_c * (\frac{6}{3^{n/2}} * (\frac{C}{I})_{min})^{2/n}}$$

## Radio Capacity m for n = 4

$$m = \frac{B_t}{B_{c*} \sqrt{2/3*(C/I)_{min}}}$$

- m ... number of radio channels per cell
- (C/I)min lower in digital systems compared to analog systems
- lower (C/I)min imply more capacity
  - exact values in real world conditions measured

## Compare different Systems

- each digital wireless standard has different (C/I)min
- to compare them an equivalent (C/I) needed
- keep total spectrum allocation Bt and number of rario channels per cell m constant to get (C/I)eq:

## Compare different Systems

$$\left(\frac{C}{I}\right)_{eq} = \left(\frac{C}{I}\right)_{min} * \left(\frac{B_c}{B_{c'}}\right)^2$$

- Be ... bandwidth of a particular system
- (C/I)min ... tolerable value for the same system
- Be'... channel bandwidth for a different system
- (C/I)eq ... minimum C/I value for the different system

## C/I in digital cellular systems

$$\frac{C}{I} = \frac{E_b * R_b}{I} = \frac{E_c * R_c}{I}$$

- Rb ... channel bit rate
- Eb ... energy per bit
- Rc ... rate of the channel code
- Ec ... energy per code symbol

## C/I in digital cellular systems

combine last two equations:

$$\frac{(C/I)}{(C/I)_{eq}} = \frac{(E_c*R_c)/I}{(E_c*R_c')/I'} = (\frac{B_c'}{B_c})^2$$

The sign 'marks compared system parameters

## C/I in digital cellular systems

- Relationship between Rc and Bc is always linear (Rc/Rc' = Bc/Bc')
- assume that level I is the same for two different systems (I' = I):

$$\frac{E_{c}}{E_{c}} = (\frac{B_{c}}{B_{c}})^{3}$$

### Compare C/I between FDMA and TDMA

- Assume that multichannel FDMA system occupies same spectrum as a TDMA system
- FDMA: C = Eb \* Rb ; I = Io \* Bc
- TDMA : C' = Eb \* Rb' ; I' = Io \* Bc'
- Eb ... Energy per bit
- Io ... interference power per Hertz
- Rb ... channel bit rate
- Be ... channel bandwidth

#### Example

- A FDMA system has 3 channels, each with a bandwidth of 10kHz and a transmission rate of 10 kbps.
- A TDMA system has 3 time slots, a channel bandwidth of 30kHz and a transmission rate of 30 kbps.
- What's the received carrier-to-interference ratio for a user?

#### Example

In TDMA system C'/I' be measured in 333.3 ms per second - one time slot

In this example FDMA and TDMA have the same radio capacity (C/I leads to m)

#### Example

- Peak power of TDMA is 10logk higher then in FDMA (k... time slots)
- in practice TDMA have a 3-6 times better capacity

- one beam each user
- base station tracks each user as it moves
- adaptive antennas most powerful form
- beam pattern  $G(\mathbb{I})$  has maximum gain in the direction of desired user
- beam is formed by N-element adaptive array antenna

- G(I) steered in the horizontal I -plane through 360°
- G(I) has no variation in the elevation plane to account which are near to and far from the base station
- following picture shows a 60 degree beamwidth with a 6 dB sideslope level



- reverse link received signal power, from desired mobiles, is Pr;0
  - interfering users i = 1,...,k-1 have received power  $P_{r;I}$
- average total interference power I seen by a single desired user:

### Capacity of SDMA

$$I = E \left\{ \prod_{i=1}^{K-1} G(\square_i) P_{r;I} \right\}$$

- i ... direction of the i-th user in the horizontal plane
- E ... expectation operator

in case of perfect power control (received power from each user is the same):

$$P_{r;I} = P_c$$

• Average interference power seen by user 0:

$$I = P_c E \left\{ \underset{i=1}{\overset{K-1}{\square}} G(\square_i) \right\}$$

users independently and identically distributed throughout the cell:

$$I = P_c *(k-1) * 1/D$$

- D... directivity of the antenna given by  $max(G(\square))$ 
  - D typ. 3dB ...10dB

Average bit error rate Pb for user 0:

$$P_b = Q\left(\sqrt{\frac{3 D N}{K-1}}\right)$$

- D ... directivity of the antenna
- $\mathbf{Q}(\mathbf{x})$  ... standard Q-function
- N ... spreading factor
- K ... number of users in a cell

