
E Content of Mobile Application Development

Mobile Computing

Mobile Computing refers a technology that allows transmission of data, voice and video via a

computer or any other wireless enabled device. It is free from having a connection with a

fixed physical link. It facilitates the users to move from one physical location to another

during communication.

Our Mobile communication tutorial includes all topics of mobile computing like its brief

overview and history, evolution, classification, advantages and disadvantages, security issues,

future trends etc.

The concept of Mobile Computing can be divided into three parts:

o Mobile Communication

o Mobile Hardware

o Mobile Software

Mobile Communication

Mobile Communication specifies a framework that is responsible for the working of mobile

computing technology. In this case, mobile communication refers to an infrastructure that

ensures seamless and reliable communication among wireless devices. This framework

ensures the consistency and reliability of communication between wireless devices. The

mobile communication framework consists of communication devices such as protocols,

services, bandwidth, and portals necessary to facilitate and support the stated services. These

devices are responsible for delivering a smooth communication process.

Mobile communication can be divided in the following four types:

1. Fixed and Wired

2. Fixed and Wireless

3. Mobile and Wired

4. Mobile and Wireless

https://www.javatpoint.com/mobile-communication-tutorial

Fixed and Wired: In Fixed and Wired configuration, the devices are fixed at a

position, and they are connected through a physical link to communicate with

other devices.

Mobile Hardware

Mobile hardware consists of mobile devices or device components that can be

used to receive or access the service of mobility. Examples of mobile hardware

can be smartphones, laptops, portable PCs, tablet PCs, Personal Digital

Assistants, etc.

Mobile Software

Mobile software is a program that runs on mobile hardware. This is designed to

deal capably with the characteristics and requirements of mobile applications.

This is the operating system for the appliance of mobile devices. In other words,

you can say it the heart of the mobile systems. This is an essential component

that operates the mobile device. FOR E.G. ANDROID, BLACKBERRY, IOS

,WINDOWS OS FOR MOBILES ETC.

Mobile Devices

Following is the list of most common forms of devices used in mobile

computing:

1. Portable Computers

A portable computer is a computer that is designed in a way that you can move

it from one place to another. It includes a display and a keyboard. Generally,

portable computers are microcomputers.

Compaq Portable and Contemporary portable computer with 3 LCD screens

were the early examples of portable computers. Now, portable computers are

discontinued.

2. Personal Digital Assistant/Enterprise Digital Assistant

(PDA or EDA)

A Personal Digital Assistant (PDA) is also known as a palmtop computer.

Sometimes, it is also called Enterprise Digital Assistant (EDA). A personal

Digital Assistant (PDA) is a mobile device used to function as a personal

information manager or a personal data assistant. Its name, Personal Digital

Assistant (PDA), was evolved from Personal Desktop Assistant, a software term

for an application that prompts or prods the user of a computer with suggestions

or provides a quick reference to contacts and other lists.

Apple Newton and UPOP PDA were the early examples of Personal Digital

Assistant. Now, a Personal Digital Assistant (PDAs) are also discontinued.

3. Ultra-Mobile PC

An ultra-mobile PC was a small form factor version of a pen computer. It was a

class of laptops whose specifications were launched by Microsoft and Intel in

2006.

Samsung q1 ultra-premium was the early example of an ultra-mobile PC. Now,

ultra-mobile PCs are also discontinued.

4. Laptop

A laptop is a small, portable personal computer (PC) built in a foldable device.

The folding structure of a laptop is called a clamshell form factor. The flip or

clamshell is a form factor of a mobile phone or other devices that include two or

more folded sections via a hinge. A laptop typically has a

thin LCD or LED computer screen mounted on the inside of the clamshell's

upper lid and an alphanumeric keyboard on the inside of the lower lid. Laptops

are easy to carry for transportation, and that's why they are best suitable for

mobile use.

5. Smartphone

A smartphone is a mobile device that combines cellular and mobile computing

functions into one unit. The smartphones are invented to provide more advanced

computing capability and connectivity than basic feature phones.

Smartphones are different from basic feature phones by their more robust

hardware capabilities and extensive mobile operating systems, which facilitate

more comprehensive software, internet i.e., web browsing over mobile

broadband, and multimedia functionality i.e., music, video, cameras, and

gaming etc., along with the core phone functions such as voice calls and text

messaging.

6. Tablet Computers

A tablet computer is generally known as a tablet. It is a mobile computer with a

mobile operating system and a touch-screen display processing circuit, and a

https://www.javatpoint.com/lcd-full-form
https://www.javatpoint.com/led-full-form

rechargeable battery in a single, thin and flat unit. Tablets can do what other

personal computers can do, but they don't have some input/output (I/O) abilities

that computers have. Nowadays, tablets are very much similar to modern

smartphones. The only difference is that tablets are relatively larger than

smartphones, with screens 7 inches or larger and may not support a cellular

network.

7. Wearable computers

Wearable computers are a type of computer that can be worn by the bearer

under, with or on top of clothing. They are also known as body-borne

computers or wearables, which are small electronic devices. Some examples of

wearable computers are smartwatches, digital fitness bands etc.

Three-tier mobile computing architecture

First Tier/ Layer

• User Interface/Presentation Layer – deals with the user facing device handling

& rendering.

• This tier includes a user interfacing components like Textbox, Labels,

Checkboxes, etc.

Second Tier/Layer

• Process Management/application Layer – deals with Business logic & Rules.

• It is capable of accommodating hundreds users.

• The middle process management tier controls transactions & asynchronous

queuing to ensure reliable completion of transaction

Third Tier/Layer

• Database Management/Data Tier – deals with DB management & access.

• The three tier architecture is better suited for an effective networked client /

server design

• These characteristics entertain the use of 3 tier architecture useful for

internet applications & net centric systems

• To design a system for mobile computing , we need to keep in mind that the

system will used through any network, any bearer, any agent, any device etc.

Android is a complete set of software for mobile devices such as tablet

computers, notebooks, smartphones, electronic book readers, set-top boxes etc.

It contains a linux-based Operating System, middleware and key mobile

applications.

It can be thought of as a mobile operating system. But it is not limited to mobile

only. It is currently used in various devices such as mobiles, tablets, televisions

etc.

It is developed by Google and later the OHA (Open Handset Alliance). Java

language is mainly used to write the android code even though other languages

can be used.

The goal of android project is to create a successful real-world product that

improves the mobile experience for end users.

Features of Android

After learning what is android, let's see the features of android. The important

features of android are given below:

1) It is open-source.

2) Anyone can customize the Android Platform.

3) There are a lot of mobile applications that can be chosen by the consumer.

4) It provides many interesting features like weather details, opening screen,

live RSS (Really Simple Syndication) feeds etc.

It provides support for messaging services(SMS and MMS), web browser,

storage (SQLite), connectivity (GSM, CDMA, Blue Tooth, Wi-Fi etc.), media,

handset layout etc.

History of Android

The history and versions of android are interesting to know. The code names of

android ranges from A to J currently, such

as Aestro, Blender, Cupcake, Donut, Eclair, Froyo, Gingerbread, Honeyco

mb, Ice Cream Sandwitch, Jelly Bean, KitKat and Lollipop. Let's understand

the android history in a sequence.

1) Initially, Andy Rubin founded Android Incorporation in Palo Alto,

California, United States in October, 2003.

2) In 17th August 2005, Google acquired android Incorporation. Since then, it is

in the subsidiary of Google Incorporation.

3) The key employees of Android Incorporation are Andy Rubin, Rich

Miner, Chris White and Nick Sears.

4) Android is the nick name of Andy Rubin given by coworkers because of his

love to robots.

5) In 2007, Google announces the development of android OS.

6) In 2008, HTC launched the first android mobile.

Version Code name API Level

1.5 Cupcake 3

1.6 Donut 4

2.1 Eclair 7

2.2 Froyo 8

2.3 Gingerbread 9 and 10

3.1 and 3.3 Honeycomb 12 and 13

4.0 Ice Cream Sandwitch 15

4.1, 4.2 and 4.3 Jelly Bean 16, 17 and 18

4.4 KitKat 19

5.0 Lollipop 21

6.0 Marshmallow 23

7.0 Nougat 24-25

8.0 Oreo 26-27

Android Architecture

android architecture or Android software stack is categorized into five parts:

1. linux kernel

2. native libraries (middleware),

3. Android Runtime

4. Application Framework

5. Applications

Let's see the android architecture first.

1) Linux kernel

It is the heart of android architecture that exists at the root of

android architecture. Linux kernel is responsible for device

drivers, power management, memory management, device

management and resource access.

2) Native Libraries

On the top of linux kernel, their are Native libraries such as WebKit, OpenGL,

FreeType, SQLite, Media, C runtime library (libc) etc.

The WebKit library is responsible for browser support, SQLite is for database,

FreeType for font support, Media for playing and recording audio and video

formats.

3) Android Runtime

In android runtime, there are core libraries and DVM (Dalvik Virtual Machine)

which is responsible to run android application. DVM is like JVM but it is

optimized for mobile devices. It consumes less memory and provides fast

performance.

4) Android Framework

On the top of Native libraries and android runtime, there is android framework.

Android framework includes Android API's such as UI (User Interface),

telephony, resources, locations, Content Providers (data) and package managers.

It provides a lot of classes and interfaces for android application development.

5) Applications

On the top of android framework, there are applications. All applications such

as home, contact, settings, games, browsers are using android framework that

uses android runtime and libraries. Android runtime and native libraries are

using linux kernal.

Dalvik Virtual Machine | DVM

As we know the modern JVM is high performance and provides excellent

memory management. But it needs to be optimized for low-powered handheld

devices as well.

The Dalvik Virtual Machine (DVM) is an android virtual machine optimized

for mobile devices. It optimizes the virtual machine for memory, battery

life and performance.

Dalvik is a name of a town in Iceland. The Dalvik VM was written by Dan

Bornstein.

The Dex compiler converts the class files into the .dex file that run on the

Dalvik VM. Multiple class files are converted into one dex file.

Let's see the compiling and packaging process from the source file:

The javac tool compiles the java source file into the class file.

The dx tool takes all the class files of your application and generates a single

.dex file. It is a platform-specific tool.

Android SDK and it’s Components

Android SDK is a collection of libraries and Software Development tools that

are essential for Developing Android Applications. Whenever Google releases

a new version or update of Android Software, a corresponding SDK also

releases with it. In the updated or new version of SDK, some more features are

included which are not present in the previous version. Android SDK consists

of some tools which are very essential for the development of Android

Application. These tools provide a smooth flow of the development process

from developing and debugging. Android SDK is compatible with all

operating systems such as Windows, Linux, macOS, etc.

1. Android SDK Tools

Android SDK tool is an important component of Android SDK. It consists of a

complete set of development and debugging tools. Below are the SDK

developer tools:

• Android SDK Build tool.

• Android Emulator.

• Android SDK Platform-tools.

• Android SDK Tools.

Android SDK Build-Tools
Android SDK build tools are used for building actual binaries of Android App.

The main functions of Android SDK Build tools are built, debug, run and test

Android applications. The latest version of the Android SDK Build tool is

 30.0.3. While downloading or updating Android in our System, one must

ensure that its latest version is download in SDK Components.

3. Android Emulator
An Android Emulator is a device that simulates an Android device on your

system. Suppose we want to run our android application that we code. One

option is that we will run this on our Android Mobile by Enabling USB

Debugging on our mobile. Another option is using Android Emulator. In

Android Emulator the virtual android device is shown on our system on which

we run the Android application that we code.

Thus, it simply means that without needing any physical device Android SDK

component “Android Emulator” provides a virtual device on the System where

we run our Application. The emulator’s come with the configuration for

Various android phones, tablets, Wear OS, and Android TV devices.

4. Android SDK Platform-tools
Android SDK Platform-tools is helpful when we are working on Project and

they will show the error messages at the same time. It is specifically used for

testing. It includes:

• Android Debug Bridge (ADB), is a command-line tool that helps to

communicate with the device. It allows us to perform an action such as

Installing App and Debugging App etc.

• Fastboot allows you to flash a device with a new system image.

• Systrace tools help to collect and inspect timing information. It is very

crucial for App Debugging.

5. Android SDK Tools
Android SDK tool is a component of SDK tool. It consists of a set of tools

which and other Utilities which are crucial for the development of Android

Application. It contains the complete set of Debugging and Development tools

for android.

Create and manage virtual devices

An Android Virtual Device (AVD) is a configuration that defines the

characteristics of an Android phone, tablet, Wear OS, Android TV, or

Automotive OS device that you want to simulate in the Android Emulator. The

Device Manager is a tool you can launch from Android Studio that helps you

create and manage AVDs.

Create an AVD

To create a new AVD:

1. Open the Device Manager.

2. Click Create Device.

The Select Hardware window appears.

https://developer.android.com/studio/run/emulator

Notice that only some hardware profiles include Play Store. These profiles are

fully CTS compliant and might use system images that include the Play Store

app.

3. Select a hardware profile, then click Next.

If you don't see the hardware profile you want, you can create or import a

hardware profile, as described in other sections on this page.

The System Image window appears.

https://source.android.com/compatibility/cts/
https://developer.android.com/studio/run/managing-avds#createhp
https://developer.android.com/studio/run/managing-avds#importexporthp

4. Select the system image for a particular API level, and then click Next.

The Verify Configuration window appears.

5. Change the AVD properties as needed, and then click Finish.

Click Show Advanced Settings to show more settings, such as the skin.

The new AVD appears in the Virtual tab of the Device Manager and the target

device menu.

To create an AVD starting with a copy:

1. From the Virtual tab of the Device Manager, click Menu and

select Duplicate.

The Verify Configuration window appears.

2. Click Previous if you need to make changes on the System Image or Select

Hardware windows.

3. Make any changes you need, and then click Finish.

The AVD appears in the Virtual tab of the Device Manager.

https://developer.android.com/studio/run/managing-avds#avdproperties
https://developer.android.com/studio/run/managing-avds#verifyconfigpage
https://developer.android.com/studio/run/managing-avds#systemimagepage
https://developer.android.com/studio/run/managing-avds#selecthardwarepage
https://developer.android.com/studio/run/managing-avds#selecthardwarepage

Create a hardware profile

The Device Manager provides predefined hardware profiles for common

devices so you can easily add them to your AVD definitions. If you need to

define a different device, you can create a new hardware profile.

You can define a new hardware profile from the beginning or copy a hardware

profile as a starting point. The preloaded hardware profiles aren't editable.

To create a new hardware profile from the beginning:

1. In the Select Hardware window, click New Hardware Profile.

2. In the Configure Hardware Profile window, change the hardware profile

properties as needed.

3. Click Finish.

Your new hardware profile appears in the Select Hardware window. You

can create an AVD that uses the hardware profile by clicking Next or

click Cancel to return to the Virtual tab or target device menu.

https://developer.android.com/studio/run/managing-avds#selecthardwarepage
https://developer.android.com/studio/run/managing-avds#hpproperties
https://developer.android.com/studio/run/managing-avds#hpproperties
https://developer.android.com/studio/run/managing-avds#createavd

To create a hardware profile using a copy as a starting point:

1. In the Select Hardware window, select a hardware profile and click Clone

Device or right-click a hardware profile and select Clone.

2. In the Configure Hardware Profile window, change the hardware profile

properties as needed.

3. Click Finish.

Your new hardware profile appears in the Select Hardware window. You

can create an AVD that uses the hardware profile by clicking Next or

click Cancel to return to the Virtual tab or target device menu.

Edit existing AVDs

You can perform the following operations on an AVD from the Device

Manager's Virtual tab:

• To edit an AVD, click Edit this AVD and make your changes.

• To delete an AVD, click Menu and select Delete.

• To show the associated AVD INI and IMG files on disk, click Menu and

select Show on Disk.

• To view AVD configuration details that you can include in bug reports to the

Android Studio team, click Menu and select View Details.

Activity & Intents :-

An Activity represents a single screen in your app with which your user can

perform a single, focused task such as taking a photo, sending an email, or

viewing a map. An activity is usually presented to the user as a full-screen

window.

An app usually consists of multiple screens that are loosely bound to each other.

Each screen is an activity. Typically, one activity in an app is specified as the

"main" activity (MainActivity.java), which is presented to the user when the app

is launched. The main activity can then start other activities to perform different

actions.

Each time a new activity starts, the previous activity is stopped, but the system

preserves the activity in a stack (the "back stack"). When a new activity starts,

that new activity is pushed onto the back stack and takes user focus. The back

stack follows basic "last in, first out" stack logic. When the user is done with the

https://developer.android.com/studio/run/managing-avds#hpproperties
https://developer.android.com/studio/run/managing-avds#hpproperties
https://developer.android.com/studio/run/managing-avds#createavd
https://developer.android.com/reference/android/app/Activity.html

current activity and presses the Back button, that activity is popped from the

stack and destroyed, and the previous activity resumes.

An activity is started or activated with an intent. An Intent is an asynchronous

message that you can use in your activity to request an action from another

activity, or from some other app component. You use an intent to start one

activity from another activity, and to pass data between activities.

An Intent can be explicit or implicit:

• An explicit intent is one in which you know the target of that intent. That

is, you already know the fully qualified class name of that specific

activity.

• An implicit intent is one in which you do not have the name of the target

component, but you have a general action to perform.

User Interface:

Difference Between View and ViewGroup in Android

In Android Layout is used to describe the user interface for an app or activity,

and it stores the UI elements that will be visible to the user. An android app’s

user interface is made up of a series of View and ViewGroup elements. In

most cases, android apps will have one or more operations, each of which is a

single screen of the app. Multiple UI components will be present in the

operations, and those UI components will be instances of the View and

ViewGroup subclasses. Generally, the android apps will contain one or more

activities and each activity is one screen of the app. The activities will contain

multiple UI components and those UI components are the instances of View

and ViewGroup subclasses. In Android apps, the two very central classes are

the Android View class and ViewGroup class. One or more tasks can be

found in an Android app. A screen in an Android operation is identical to the

windows in a desktop application. GUI components may be used in an

operation. View or ViewGroup subclasses are used to build the GUI elements.

View is a basic building block of UI (User Interface) in android. A view is a

small rectangular box that responds to user inputs. Eg: EditText, Button,

CheckBox, etc. ViewGroup is an invisible container of other views (child

views) and other ViewGroup. Eg: LinearLayout is a ViewGroup that can

contain other views in it. ViewGroup is a special kind of view that is extended

from View as its base class. ViewGroup is the base class for layouts. As the

name states View is singular and the group of Views is the ViewGroup. In

simple terms, a view is a user interface feature that we interact with when we

use an app, such as a button, editing text and images, and so

https://developer.android.com/reference/android/content/Intent.html
https://www.geeksforgeeks.org/linearlayout-and-its-important-attributes-with-examples-in-android/

on. Android.view has a child class called View. Observe While the View

group is the container that houses all of these views as well as many

other ViewGroup such as linear or Frame Layout. For example, if we design

and use the LinearLayout as the root feature, our main layout would be the

LinearLayout. Within it, we can add another view category (i.e. another

LinearLayout) and several other views such as buttons or TextViews.

View

The View class is the base class or we can say that it is the superclass for all

the GUI components in android. For example, the EditText class is used to

accept the input from users in android apps, which is a subclass of View, and

another example of the TextView class which is used to display text labels in

Android apps is also a subclass of View.

Or the other definition,

View refer to the android.view.View class, which is the base class of all UI

classes. android.view.View class is the root of the UI class hierarchy. So from

an object point of view, all UI objects are View objects. Following are some of

the common View subclasses that will be used in android applications.

• TextView

• EditText

• ImageView

• RadioButton

• Button

• ImageButton

• CheckBox

• DatePicker

• Spinner

• ProgressBar and etc.

These are some of the view subclass available in android.

ViewGroup

The ViewGroup class is a subclass of the View class. And also it will act as a

base class for layouts and layouts parameters. The ViewGroup will provide an

invisible container to hold other Views or ViewGroups and to define the

layout properties. For example, Linear Layout is the ViewGroup that contains

UI controls like Button, TextView, etc., and other layouts

also. ViewGroup Refer to the android.view.ViewGroup class, which is the

base class of some special UI classes that can contain other View objects as

children. Since ViewGroup objects are also View objects, multiple ViewGroup

objects and View objects can be organized into an object tree to build a

complex UI structure. Following are the commonly used ViewGroup

subclasses used in android applications.

• FrameLayout

• WebView

https://www.geeksforgeeks.org/working-with-the-textview-in-android/
https://www.geeksforgeeks.org/working-with-the-textview-in-android/
https://www.geeksforgeeks.org/edittext-widget-in-android-using-java-with-examples/
https://www.geeksforgeeks.org/imageview-in-android-with-example/
https://www.geeksforgeeks.org/radiobutton-in-kotlin/
https://www.geeksforgeeks.org/button-in-kotlin/
https://www.geeksforgeeks.org/imagebutton-in-kotlin/
https://www.geeksforgeeks.org/how-to-use-checkbox-in-android/
https://www.geeksforgeeks.org/datepicker-in-kotlin/
https://www.geeksforgeeks.org/spinner-in-android-using-java-with-example/
https://www.geeksforgeeks.org/progressbar-in-kotlin/
https://www.geeksforgeeks.org/android-framelayout-in-kotlin/
https://www.geeksforgeeks.org/android-webview-in-kotlin/

• ListView

• GridView

• LinearLayout

• RelativeLayout

• TableLayout and many more.

The ViewGroup subclasses listed above group View instances together and

takes care of their layout. For instance, the LinearLayout will render the

components after each other either horizontally or vertically.

Difference Table

View

ViewGroup

View is a simple rectangle box

that responds to the user’s

actions.

ViewGroup is the invisible container. It

holds View and ViewGroup

View is the SuperClass of All

component like TextView,

ViewGroup is a collection of

Views(TextView, EditText, ListView,

https://www.geeksforgeeks.org/android-listview-in-java-with-example/
https://www.geeksforgeeks.org/gridview-in-android-with-example/
https://www.geeksforgeeks.org/linearlayout-and-its-important-attributes-with-examples-in-android/
https://www.geeksforgeeks.org/android-relativelayout-in-kotlin/
https://www.geeksforgeeks.org/android-tablelayout-in-kotlin/

View

ViewGroup

EditText, ListView, etc etc..), somewhat like a container.

A View object is a component of

the user interface (UI) like a

button or a text box, and it’s also

called a widget.

A ViewGroup object is a layout, that is, a

container of other ViewGroup objects

(layouts) and View objects (widgets)

Examples are EditText, Button,

CheckBox, etc.

For example, LinearLayout is the

ViewGroup that contains Button(View),

and other Layouts also.

View refers to the

android.view.View class

ViewGroup refers to the

android.view.ViewGroup class

android.view.View which is the

base class of all UI classes.
ViewGroup is the base class for Layouts.

So, these all are the basic key difference between the View class and

Viewgroup class in Android.

Android - Location Based Services

Android location APIs make it easy for you to build location-aware

applications, without needing to focus on the details of the underlying location

technology.

This becomes possible with the help of Google Play services, which facilitates

adding location awareness to your app with automated location tracking,

geofencing, and activity recognition.

The Location Object

The Location object represents a geographic location which can consist of a

latitude, longitude, time stamp, and other information such as bearing, altitude

and velocity. There are following important methods which you can use with

Location object to get location specific information −

Sr.No. Method & Description

1
float distanceTo(Location dest)

Returns the approximate distance in meters between

this location and the given location.

2 float getAccuracy()

Get the estimated accuracy of this location, in meters.

3 double getAltitude()

Get the altitude if available, in meters above sea level.

4 float getBearing()

Get the bearing, in degrees.

5 double getLatitude()

Get the latitude, in degrees.

6 double getLongitude()

Get the longitude, in degrees.

7
float getSpeed()

Get the speed if it is available, in meters/second over

ground.

8 boolean hasAccuracy()

True if this location has an accuracy.

9 boolean hasAltitude()

True if this location has an altitude.

10 boolean hasBearing()

True if this location has a bearing.

11 boolean hasSpeed()

True if this location has a speed.

12 void reset()

Clears the contents of the location.

13 void setAccuracy(float accuracy)

Set the estimated accuracy of this location, meters.

14 void setAltitude(double altitude)

Set the altitude, in meters above sea level.

15 void setBearing(float bearing)

Set the bearing, in degrees.

16 void setLatitude(double latitude)

Set the latitude, in degrees.

17 void setLongitude(double longitude)

Set the longitude, in degrees.

18 void setSpeed(float speed)

Set the speed, in meters/second over ground.

19
String toString()

Returns a string containing a concise, human-readable

description of this object.

Get the Current Location

To get the current location, create a location client which

is LocationClient object, connect it to Location Services

using connect() method, and then call its getLastLocation() method. This

method returns the most recent location in the form of Location object that

contains latitude and longitude coordinates and other information as explained

above. To have location based functionality in your activity, you will have to

implement two interfaces −

• GooglePlayServicesClient.ConnectionCallbacks

• GooglePlayServicesClient.OnConnectionFailedListener

Android SQLite

SQLite is an open-source relational database i.e. used to perform database

operations on android devices such as storing, manipulating or retrieving

persistent data from the database.

It is embedded in android bydefault. So, there is no need to perform any

database setup or administration task.

Here, we are going to see the example of sqlite to store and fetch the data. Data

is displayed in the logcat. For displaying data on the spinner or listview, move

to the next page.

SQLiteOpenHelper class provides the functionality to use the SQLite database.

Backward Skip 10sPlay VideoForward Skip 10s

SQLiteOpenHelper class

The android.database.sqlite.SQLiteOpenHelper class is used for database

creation and version management. For performing any database operation, you

have to provide the implementation of onCreate() and onUpgrade() methods

of SQLiteOpenHelper class.

Constructors of SQLiteOpenHelper class

There are two constructors of SQLiteOpenHelper class.

Constructor Description

SQLiteOpenHelper(Context context, String name,

SQLiteDatabase.CursorFactory factory, int

version)

creates an object for

creating, opening and

managing the database.

SQLiteOpenHelper(Context context, String name,

SQLiteDatabase.CursorFactory factory, int

version, DatabaseErrorHandler errorHandler)

creates an object for

creating, opening and

managing the database. It

specifies the error handler.

Methods of SQLiteOpenHelper class

There are many methods in SQLiteOpenHelper class. Some of them are as

follows:

Method Description

public abstract void onCreate(SQLiteDatabase

db)

called only once when

database is created for the

first time.

public abstract void onUpgrade(SQLiteDatabase

db, int oldVersion, int newVersion)

called when database needs

to be upgraded.

public synchronized void close () closes the database object.

public void onDowngrade(SQLiteDatabase db,

int oldVersion, int newVersion)

called when database needs

to be downgraded.

SQLiteDatabase class

It contains methods to be performed on sqlite database such as create, update,

delete, select etc.

Methods of SQLiteDatabase class

There are many methods in SQLiteDatabase class. Some of them are as follows:

Method Description

void execSQL(String sql) executes the sql query not select query.

long insert(String table, String

nullColumnHack, ContentValues

values)

inserts a record on the database. The table

specifies the table name, nullColumnHack

doesn't allow completely null values. If second

argument is null, android will store null values if

values are empty. The third argument specifies

the values to be stored.

int update(String table,

ContentValues values, String

whereClause, String[]

whereArgs)

updates a row.

Cursor query(String table,

String[] columns, String

selection, String[] selectionArgs,

String groupBy, String having,

returns a cursor over the resultset.

String orderBy)

