
Lesson -4 Project Planning 

 

 

4.0 Objectives 

 

Project planning is an important issue in the successful completion of a software project.  The  

objective  of  this  lesson  is  to  make  the  students  familiar  with  the factors affecting the 

cost of the software, different versions of COCOMO and the problems and criteria to evaluate 

the models. 

4.1 Introduction 

 

Software cost estimation is the process of predicting the amount of effort required to build a 

software system. Software cost estimation is one of the most difficult and  error  prone  task  

in  software  engineering.  Cost  estimates  are  needed throughout the software lifecycle. 

Preliminary estimates are required to determine the feasibility of  a project. Detailed estimates 

are needed to assist with project planning. The actual  effort for  individual  tasks  is  compared  

with  estimated  and planned   values,   enabling   project   managers   to   reallocate   

resources   when necessary. Analysis of historical project data indicates that cost trends can be 

correlated with certain measurable parameters. This observation has resulted in a wide range of 

models that can be used to assess, predict, and control software costs on a real- time basis. 

Models provide one or more mathematical algorithms that compute cost as a function of a 

number of variables. 

 

 

 

4.2 Cost factor 

 

There are a number of factors affecting the cost of the software. The major one are listed below: 

➢   Programmer  ability:  Results  of  the  experiments  conducted  by  Sackman show

 a significant difference in individual performance among the 

programmers.  The  difference  between  best  and  worst  performance  were factors  

of  6  to  I  in  program  size,  8  to  1  in  execution  time,  9  to  1  in 

development time, 18 to 1 in coding time, and 28 to 1 in debugging time. 

➢    Product  Complexity:  There  are  generally  three  acknowledged  category  of the 

software: application programs, utility programs and system programs. According  to  Brook  

utility  programs  are  three  times  as  difficult  to  write  as application programs, and that 

system programs are three times as difficult to write  as  utility  programs.  So  it  is  a  

major  factor  influencing  the  cost  of software. 

➢    Product  Size:  It  is  obvious  that  a  large  software  product  will  be  more 

expensive than a smaller one. 



➢   Available  time:  It  is  generally  agreed  that  software  projects  require  more total 

efforts if development time is compressed or expanded from the optimal time. 

➢   Required reliability: Software reliability can be defined as the probability that a program will 

perform a required function under stated conditions for a stated period of time. Reliability can be 

improved in a software, but there is a cost associated  with  the  increased  level  of  

analysis,  design,  implementation, verification   and   validation  efforts  that  must   be  

exerted   to   ensure   high reliability. 

 

➢   Level of technology: The level of technology is reflected by the 

 

programming   language,   abstract   machine,   programming   practices   and software 

tools used. Using a high level language instead of assembly 

language will certainly improve the productivity of programmer thus resulting into a decrease 

in the cost of software. 

4.3 COCOMO’81 

 

Boehm's COCOMO model is one of the mostly used models commercially. The first version of  

the model delivered in 1981 and COCOMO II is available now. COCOMO 81 is a model 

designed by Barry Boehm to give an estimate of the number of man-months it will take to 

develop a software product. This 

"Constructive Cost Estimation Model" is based on a study of about sixty projects at TRW, 

 

a  Californian  automotive  and  IT  company,  acquired  by  Northrop  Grumman  in late 

2002.  The  programs  examined  ranged  in  size  from  2000  to  100,000  lines  of code,   

and   programming   languages   used   ranged   from   assembly   to   PL/I. COCOMO  

consists  of  a  hierarchy  of  three  increasingly  detailed  and  accurate forms. 

 

✓ Basic COCOMO - is a static, single-valued model that computes software development 

effort (and cost) as a function of program size expressed in estimated lines of code. 

✓ Intermediate   COCOMO   -   computes   software   development   effort   as 

function of program size and a set of "cost drivers" that include subjective assessment 

of product, hardware, personnel and project attributes. 



✓ Detailed  COCOMO  -  incorporates  all  characteristics  of  the  intermediate version  

with  an  assessment  of  the  cost  driver's  impact  on  each  step 

(analysis, design, etc.) of the software engineering process. 

 

4.3.1 Basic COCOMO 81 

 

Basic COCOMO is a form of the COCOMO model. COCOMO may be applied 

 

to three classes of software projects. These give a general impression of the software project. 

➢ Organic projects – These are relatively small, simple software projects in 

 

which small teams with good application experience work to a set of less than rigid 

requirements. 

➢ Semi-detached projects – These are intermediate (in size and 

complexity) software projects in which teams with mixed experience levels must meet a 

mix of rigid and less than rigid requirements. 

➢ Embedded   projects   –   These   are   software   projects   that   must   be 

developed   within   a   set   of   tight   hardware,   software,   and   operational 

constraints. 

  Size Innovation Deadline/constraints Dev. Environment 

Organic Small Little Not tight Stable 

Semi-detached Medium Medium Medium Medium 

Embedded Large Greater Tight Complex H/W 

    /customer interfaces  

Table 4.1 Three classes of S/W projects for COCOMO The basic 

COCOMO equations take the form 

E=a (KLOC) 
b
 

 

D=c (E) 
d
 

 

P=E/D 

 

where  E  is  the  effort  applied  in  person-months,  D  is  the  development  time  in 

chronological months, KLOC is the estimated number of delivered lines of code 



Software project a b c D 

Organic 2.4 1.05 2.5 0.38 

Semi-detached 3.0 1.12 2.5 0.35 

Embedded 3.6 1.20 2.5 0.32 

 

for  the  project  (expressed  in  thousands),  and  P  is  the  number  of  people 

required. The coefficients ab, bb, cb and db are given in the table 4.2. 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2 Coefficients for Basic COCOMO 

 

Basic COCOMO is good for quick, early, rough order of magnitude estimates of software  

costs,  but  its  accuracy  is  necessarily  limited  because  of  its  lack  of factors to account 

for differences in hardware constraints, personnel quality and experience,  use  of  modern  

tools  and  techniques,  and  other  project  attributes known to have a significant influence on 

software costs. 

4.3.2 Intermediate COCOMO 81 

 

The Intermediate COCOMO is an extension of the Basic COCOMO model, and 

 

 

is  used  to  estimate  the  programmer  time  to  develop  a  software  product.  This 

extension considers a set of "cost driver attributes" that can be grouped into four major 

categories, each with a number of subcategories: 

™   Product attributes 

 

➢ Required software reliability (RELY) 

 

➢ Size of application database (DATA) 

 

➢ Complexity of the product (CPLX) 

 

™   Hardware attributes 

 

➢ Execution-time constraints (TIME) 

 



➢ Main Storage Constraints (STOR) 

 

➢ Volatility of the virtual machine environment (VIRT) 



 

➢ Required turnabout time (TURN) 

 

™   Personnel attributes 

 

➢ Analyst capability (ACAP) 

 

➢ Programmer capability (PCAP) 

 

➢ Applications experience (AEXP) 

 

➢ Virtual machine experience (VEXP) 

 

➢ Programming language experience (LEXP) 

 

™   Project attributes 

 

➢ Use of software tools (TOOL) 

 

➢ Modern Programming Practices (MODP) 

 

➢ Required development schedule (SCED) 

 

Each of the 15 attributes is rated on a 6-point scale that ranges from "very low" 

 

 

to "extra high" (in importance or value). Based on the rating, an effort multiplier is determined from 

the table below. The product of all effort multipliers results in an 

 

'effort adjustment factor (EAF). Typical values for EAF range from 0.9 to 1.4 as shown in table 

4.3. 

 

Cost 

Drivers 

Ratings 

Very Low Low Nominal High Very High Extra High 

RELY 0.75 0.88 1.00 1.15 1.40  

DATA  0.94 1.00 1.08 1.16  

CPLX 0.70 0.85 1.00 1.15 1.30 1.65 

TIME   1.00 1.11 1.30 1.66 

STOR   1.00 1.06 1.21 1.56 

VIRT  0.87 1.00 1.15 1.30  



TURN  0.87 1.00 1.07 1.15  

ACAP 1.46 1.19 1.00 0.86 0.71  

PCAP 1.29 1.13 1.00 0.91 0.82  

AEXP 1.42 1.17 1.00 0.86 0.70  

VEXP 1.21 1.10 1.00 0.90   

LEXP 1.14 1.07 1.00 0.95   

TOOL 1.24 1.10 1.00 0.91 0.82  



 

MODP 1.24 1.10 1.00 0.91 0.83  

SCED 1.23 1.08 1.00 1.04 1.10  

Table 4.3 Effort adjustment factor 

 

The Intermediate COCOMO formula now takes the form... 

 

E=a (KLOC) 
(b)

.EAF 

 

Where E is the effort applied in person-months, KLOC is the estimated number 

 

of  thousands  of  delivered  lines  of  code  for  the  project  and  EAF  is  the  factor 

calculated  above.  The  coefficient  a  and  the  exponent  b  are  given  in  the  next table. 

Software project a b 

Organic 3.2 1.05 

Semi-detached 3.0 1.12 

Embedded 2.8 1.20 

Table 4.4 Coefficients for intermediate COCOM 

 

 

The Development time D is calculated from E in the same way as with Basic 

 

COCOMO. 

 

The steps in producing an estimate using the intermediate model COCOMO'81 

 

are: 

 

1.  Identify the mode (organic, semi-detached, or embedded) of development for the new 

product. 

2.  Estimate  the  size  of  the  project  in  KLOC  to  derive  a  nominal  effort 

prediction. 

3.  Adjust 15 cost drivers to reflect your project. 

 

4.  Calculate  the  predicted  project  effort  using  first  equation  and  the  effort 

adjustment factor ( EAF ) 

5.  Calculate the project duration using second equation. 

 

Example estimate using the intermediate COCOMO'81 

 

Mode is organic 



 

Size = 200KDSI 

 

Cost drivers: 

 

➢ Low reliability => .88 

 

➢ High product complexity => 1.15 

 

➢ Low application experience => 1.13 

 

➢ High programming language experience => .95 

 

➢ Other cost drivers assumed to be nominal => 1.00 

 

C = .88 * 1.15 * 1.13 * .95 = 1.086 

 

Effort = 3.2 * (200
1.05 

) * 1.086 = 906 MM 

Development time = 2.5 * 906
0.38

 

4.3.3 Detailed COCOMO 

 

The Advanced COCOMO model computes effort as a function of program size and  a  set  

of  cost  drivers  weighted  according  to  each  phase  of  the  software lifecycle. The 

Advanced model applies the Intermediate model at the component level, and then a phase-

based approach is used to consolidate the estimate. 

The 4 phases used in the detailed COCOMO model are: requirements planning and product 

design (RPD), detailed design (DD), code and unit test (CUT), and integration  and  test  (IT).  

Each  cost  driver  is  broken  down  by  phase  as  in  the example shown in Table 4.5. 

Cost Driver Rating RPD DD CUT IT 

ACAP Very Low 1.80 1.35 1.35 1.50 

Low 0.85 0.85 0.85 1.20 

Nominal 1.00 1.00 1.00 1.00 

High 0.75 0.90 0.90 0.85 

Very High 0.55 0.75 0.75 0.70 

Table 4.5 Analyst capability effort multiplier for Detailed COCOMO Estimates made for 

each module are combined into subsystems and eventually 



an overall project estimate. Using the detailed cost drivers, an estimate is determined for 

each phase of the lifecycle. 

 

 

 

Advantages of COCOMO'81 

 

➢   COCOMO is transparent; you can see how it works unlike other models such as SLIM. 

➢   Drivers are particularly helpful to the estimator to understand the impact of different factors 

that affect project costs. 

Drawbacks of COCOMO'81 

 

➢   It is hard to accurately estimate KDSI early on in the project, when most effort estimates are 

required. 

➢   KDSI, actually, is not a size measure it is a length measure. 

 

➢   Extremely vulnerable to mis-classification of the development mode 

 

➢   Success   depends   largely   on   tuning   the   model   to   the   needs   of   the 

organization, using historical data which is not always available 



 

 

 

 

 

 

 

 

Lesson -5 

Software Requirement Analysis &Specification 

 

 

 

 

 

 

 

 

 

5.1 Introduction 

 

The analysis phase of software development is concerned with project planning and software 

requirement definition. To identify the requirements of the user is a tedious job. The description of 

the services and constraints are the requirements for  the  system  and  the  process  of  finding  

out,  analyzing,  documenting,  and checking   these   services   is   called   requirement   

engineering.   The   goal   of requirement definition is to completely and consistently specify the 

requirements for  the  software  product  in  a  concise  and  unambiguous  manner,  using  

formal notations as appropriate. The software requirement specification is based on the system  

definition.  The  requirement  specification  will  state  the  ―what  of‖  the software  product  

without  implying  ―how‖.  Software  design  is  concerned  with 

specifying how the product will provide the required features. 

 

 

 

5.2. Software system requirements 

 

Software  system  requirements  are  classified  as  functional  requirements  and non-

functional requirements. 

5.2.1. Functional requirements 

 

The functional requirements for a system describe the functionalities or services that  the  system  



is  expected  to  provide.  They  provide  how  the  system  should react  to  particular  inputs  

and  how  the  system  should  behave  in  a  particular situation. 

5.2.2 Non-functional requirements these are constraints on the services or functionalities 

offered by the system. 

 

They   include   timing   constraints,   constraints   on   the   development   process, 

standards etc. These requirements are not directly concerned with the specific function  

delivered  by  the  system.  They  may  relate  to  such  system  properties such as reliability, 

response time, and storage. They may define the constraints 

on the system such as capabilities of I/O devices and the data representations used in system 

interfaces. 

 

 

5.3 Software requirement specification 

It  is  the  official  document  of  what  is  required  of  the  system  developers.  It 

consists   of   user   requirements   and   detailed   specification   of   the   system 

requirements. According to Henninger there are six requirements that an SRS should satisfy: 

 

 

1.  It should specify only external system behavior. 

 

2.  It should specify constraints on the implementation. 

 

3.  It should be easy to change. 

 

4.  It should serve as a reference tool for system maintainers. 

 

5.  It should record forethought about the life cycle of the system. 

 

6.  It should characterize acceptable response to undesired events. The IEEE 

standard suggests the following structure for SRS: 

➢   Introduction 

1.1 Purpose of the requirement document. 

 

1.2 Scope of the product 

 

1.3 Definitions, acronyms, and abbreviations 

 

1.4 References 

 



1.5 Overview of the remainder of the document 2. 

 

General description 

 

2.1 Product perspective 

 

2.2 Product functions 

 

2.3 User characteristics 

 

2.4 General constraints 

 

2.5 Assumption and dependencies 

 

➢    Specific  requirements  covering  functional,  non-functional  and  interface 

requirements. 

➢   Appendices 

 

➢   Index 

 

 

 

5.4 Characteristics of SRS 

The desirable characteristics of an SRS are following: 

 

➢   Correct:  An  SRS  is  correct  if  every  requirement  included  in  the  SRS 

 

represents something required in the final system. 

 

➢    Complete: An SRS is complete if everything software is supposed to do and the 

responses of the software to all classes of input data are specified in the SRS. 

➢   Unambiguous:  An  SRS  is  unambiguous  if  and  only  if  every  requirement stated 

has one and only one interpretation. 

➢   Verifiable: An SRS is verifiable if and only if every specified requirement is 

verifiable i.e. there exists a procedure to check that final software meets the requirement. 

➢   Consistent:  An  SRS  is  consistent  if  there  is  no  requirement  that  conflicts with 

another. 

➢   Traceable: An SRS is traceable if each requirement in it must be uniquely identified to a 

source. 



➢   Modifiable: An SRS is modifiable if its structure and style are such that any necessary  

change  can  be  made  easily  while  preserving  completeness  and consistency. 

➢   Ranked:  An  SRS  is  ranked  for  importance  and/or  stability  if  for  each 

requirement   the   importance   and   the   stability   of   the   requirements   are 

indicated. 

5.5 Components of an SRS 

 

An SRS should have the following components: 

(i) Functionality 

 

(ii) Performance 

 

(iii) Design constraints 

 

(iv) External Interfaces 

 

Functionality 

 

Here functional requirements are to be specified. It should specify which outputs should  be  

produced  from  the  given  input.  For  each  functional  requirement,  a detailed description 

of all the inputs, their sources, range of valid inputs, the units 

of measure are to be specified. All the operation to be performed on input should also be specified. 

Performance requirements 

 

In this component of SRS all the performance constraints on the system should be specified such 

as response time, throughput constraints, number of terminals 

 

to be supported, number of simultaneous users to be supported etc. 

 

Design constraints 

 

Here  design  constraints  such  as  standard  compliance,  hardware  limitations, 

Reliability,  and  security should  be  specified. There  may be  a  requirement  that system   

will   have   to   use   some   existing   hardware,   limited   primary   and/or secondary 

memory. So it is a constraint on the designer. There may be some standards  of  the  

organization  that  should  be  obeyed  such  as  the  format  of reports.   Security   

requirements   may   be   particularly   significant   in   defense systems.  It  imposes  a  

restriction  sometimes  on  the  use  of  some  commands, control   access   to   data;   

require   the   use   of   passwords   and   cryptography techniques etc. 

 



External Interface requirements 

 

Software  has  to  interact  with  people,  hardware,  and  other  software.  All  these 

interfaces should be specified. User interface has become a very important issue now a day. So 

the characteristics of user interface should be precisely specified and should be verifiable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Lesson-6 Software Design 

 

 

 

6.1 Introduction 

 

Design is an iterative process of transforming the requirements specification into 

 

a design specification. Consider an example where Mrs. & Mr. XYZ want a new house. Their 

requirements include, 

➢   a room for two children to play and sleep 

 

➢   a room for Mrs. & Mr. XYZ to sleep 

 

➢   a room for cooking 

 

➢   a room for dining 

 

➢   a room for general activities 

 

and  so  on.  An  architect  takes  these  requirements  and  designs  a  house.  The 

architectural  design  specifies  a  particular  solution.  In  fact,  the  architect  may produce  

several  designs  to  meet  this  requirement.  For  example,  one  may maximize 

children‘s room, and other minimizes it to have large living room. In addition,  the  style  of  

the  proposed houses may differ: traditional, modern and two-storied. All of the proposed 

designs solve the problem, and there may not be a ―best‖ design. 

Software  design  can  be  viewed  in  the  same  way.  We  use  requirements 

specification to define the problem and transform this to a solution that satisfies 

all   the   requirements   in   the   specification.   Design   is   the   first   step   in   the 

development phase for any engineered product. The designer goal is to produce 

a model of an entity that will later be built. 

 

 

 

6.2 Definitions for Design 

 

➢   ―Devising artifacts to attain goals‖ [H.A. Simon, 1981]. 

 

➢    ―The  process  of  defining  the  architecture,  component,  interfaces  and  other 



characteristics of a system or component‖ [ IEEE 160.12]. 

➢   The process of applying various techniques and principles for the purpose of defining  a  

device,  a  process  or  a  system  in  sufficient  detail  to  permit  its physical 

realization. 

 

Without Design, System will be 

 

➢   Unmanageable since there is no concrete output until coding. Therefore it is difficult to 

monitor & control. 

➢   Inflexible since planning for long term changes was not given due emphasis. 

 

➢   Un maintainable since standards & guidelines for design & construction are not  used.  

No  reusability  consideration.  Poor  design  may  result  in  tightly coupled modules 

with low cohesion. Data disintegrity may also result. 

➢   Inefficient due to possible data redundancy and unturned code. 

 

➢   Not portable to various hardware / software platforms. 

 

Design is different from programming. Design brings out a representation for the program – not 

the program or any component of it. The difference is tabulated below. 

 

6.3 Qualities of a Good Design 

 

Functional: It is a very basic quality attribute. Any design solution should work, and should be 

construct able. 

Efficiency: This can be measured through 

 

➢   run time (time taken to undertake whole of processing task or transaction) 

 

➢   response time (time taken to respond to a request for information) 

 

➢   throughput (no. of transactions / unit time) 

 

➢   memory usage, size of executable, size of source, etc 

 

Flexibility:  It  is  another  basic  and  important  attribute.  The  very  purpose  of doing 

design activities is to build systems that are modifiable in the event of any changes in the 

requirements. 

Portability & Security: These are to be addressed during design - so that such 



 

needs are not ―hard-coded‖ later. 

 

Reliability: It tells the goodness of the design - how it work successfully (More important for 

real-time and mission critical and on-line systems). 

Economy: This can be achieved by identifying re-usable components. 

 

 

Usability:  Usability  is  in  terms  of  how  the  interfaces  are  designed  (clarity, 

aesthetics,  directness,  forgiveness,  user  control,  ergonomics,  etc)  and  how much 

time it takes to master the system. 

6.4 Modularity 

 

There are many definitions of the term "module." They range from "a module is a FORTRAN 

subroutine" to "a module is an Ada package" to "a module is a work assignment for an 

individual programmer". All of these definitions are correct, in the sense that modular systems 

incorporate collections of abstractions in which 

each functional abstraction, each data abstraction, and each control abstraction handles a 

local aspect of the problem being solved. Modular systems consist of well-defined,  

manageable  units  with  well-defined  interfaces  among  the  units. Desirable properties of a 

modular system include: 

➢   Each  processing  abstraction  is  a  well-defined  subsystem  that  is  potentially useful in 

other applications. 

➢   Each function in each abstraction has a single, well-defined purpose. 

 

➢   Each function manipulates no more than one major data structure. 

 

➢   Functions share global data selectively. It is easy to identify all routines that share a 

major data structure. 

 

➢  Functions   that   manipulate   instances   of   abstract   data   types   are 

encapsulated with the data structure being manipulated. 

Modularity   enhances   design   clarity,   which   in   turn   eases   implementation, 

debugging, testing, documenting, and maintenance of the software product. 

 

Modularization criteria 

 

 

Architectural design has the goal of producing well-structured, modular software systems.  In  

this  section  of  the  text,  we  consider  a  software  module  to  be  a named entity having 



the following characteristics: 

➢   Modules contain instructions, processing logic, and data structures. 

 

➢   Modules can be separately compiled and stored in a library. 

 

➢   Modules can be included in a program. 

 

➢   Module segments can be used by invoking a name and some parameters. 

 

➢   Modules can use other modules. 

 

Examples of modules include procedures, subroutines, and functions; functional 

groups  of  related  procedures,  subroutines,  and  functions;  data  abstraction groups;  

utility  groups;  and  concurrent  processes.  Modularization  allows  the designer  to  

decompose  a  system  into  functional  units,  to  impose  hierarchical ordering   on   

function   usage,to implement data abstraction,   to develop independently  useful  

subsystems.  In  addition,  modularization  can  be  used  to isolate  machine  

dependencies,  to  improve  the  performance  of  a  software product,  or  to  ease  

debugging,  testing,  integration,  tuning,  and  modification  of the system. 

There are numerous criteria that can be used to guide the modularization of a system. 

Depending on the criteria used, different system structures may result. Modularization criteria 

include the conventional criterion, in which each module and its sub modules correspond to a 

processing step in the execution sequence; the  information  hiding  criterion,  in  which  each  

module  hides  a  difficult  or changeable  design  decision  from  the  other  modules;  

the  data  abstraction criterion, in which each module hides the representation details of a major 

data structure behind functions  that access and modify the data  structure;  levels  of 

abstraction, in which modules and collections of modules provide a hierarchical set  of  

increasingly  complex  services;  coupling-cohesion,  in  which  a  system  is structured  to  

maximize  the  cohesion  of  elements  in  each  module  and  to minimize  the  coupling  

between  modules;  and  problem  modelling,  in  which  the modular  structure  of  the  system  

matches  the  structure  of  the  problem  being solved. There are two versions of problem 

modeling: either the data structures match  the  problem  structure  and  the  visible  

functions  manipulate  the  data structures, or the modules form a network of  communicating 

processes where each process corresponds to a problem entity. 



Coupling and cohesion 

 

A  fundamental  goal  of  software  design  is  to  structure  the  software  product  so that   

the   number   and   complexity   of   interconnection   between   modules   is minimized.  

A  good  heuristic  for  achieving  this  goal  involves  the  concepts  of coupling and 

cohesion. 

Coupling 

Coupling is the measure of strength of association established by a connection from  one  

module  to  another.  Minimizing  connections  between  modules  also minimizes the paths 

along which changes and errors can propagate into other parts of the system (‗ripple effect‘). 

The use of global variables can result in an enormous  number  of  connections  between  

the  modules  of  a  program.  The degree of coupling between two modules is a function of 

several factors: (1) How complicated the connection is, (2) Whether the connection refers to 

the module itself or something inside it, and (3) What is being sent or received. Coupling is 

usually  contrasted  with  cohesion.  Low  coupling  often  correlates  with  high 

cohesion,  and  vice  versa.  Coupling  can  be  "low"  (also  "loose"  and  "weak")  or 

"high" (also "tight" and "strong"). Low coupling means that one module does not have to be 

concerned with the internal implementation of another module, and interacts  with  another  

module  with  a  stable  interface.  With  low  coupling,  a change in one module will not 

require a change in the implementation of another module. Low coupling is a sign of a well 

structured computer system. 

However,  in  order  to  achieve  maximum  efficiency,  a  highly  coupled  system  is 

sometimes needed. In modern computing systems, performance is often traded for  lower  

coupling;  the gains  in  the  software  development process are  greater than the value of the 

running performance gain. 

Low-coupling  /  high-cohesion  is  a  general  goal  to  achieve  when  structuring 



computer programs, so that they are easier to understand and maintain. 

 

The concepts are usually related: low coupling implies high cohesion and vice versa.  In  

the  field  of  object-oriented  programming,  the  connection  between classes tends to get 

lower (low coupling), if we group related methods of a class together  (high  cohesion).  The  

different  types of  coupling,  in  order of  lowest  to highest, are as follows: 

✓   Data coupling 

 

✓ Stamp coupling 

 

✓ Control coupling 

 

✓ External coupling 

 

✓   Common coupling 

 

✓   Content coupling 

 

Where data coupling is most desirable and content coupling least. 

 

Data Coupling 

 

Two modules are data coupled if they communicate by parameters (each being 

 

an elementary piece of data).E.g. sin (theta) returning sine value, 

calculate_interest (amount, interest rate, term) returning interest amt. 

Stamp Coupling (Data-structured coupling) 

 

Two modules are stamp coupled if one passes to other a composite piece of data 

 

(a  piece  of  data  with  meaningful  internal  structure).  Stamp  coupling  is  when modules 

share a composite data structure, each module not knowing which part 

of the data structure will be used by the other (e.g. passing a student record to a function which 

calculates the student's GPA) 

Control Coupling 



Two modules are control coupled if one passes to other a piece of information intended  to  

control  the  internal  logic  of  the  other.  In  Control  coupling,  one module 

controls logic of another, by passing it information on what to do (e.g. passing a what-to-do flag). 

External coupling 

 

External coupling occurs when two modules share an externally imposed data format, 

communication protocol, or device interface. 

Common coupling 

 

Two modules are common coupled if they refer to the same global data area. Instead of 

communicating through parameters, two modules use a global data Content coupling 

Two modules exhibit content coupled if one refers to the inside of the other in any way (if  

one module ‗jumps‘ inside another module). E.g. Jumping inside a module violate all the 

design principles like abstraction, information hiding and modularity. 

In  object-oriented  programming,  subclass  coupling  describes  a  special  type  of coupling 

between a parent class and its child. The parent has no connection to the child class, so the 

connection is one way (i.e. the parent is a sensible class 

on its own). The coupling is hard to classify as low or high; it can depend on the 

 

situation. 

 

We aim for a ‗loose‘ coupling. We may come across a (rare) case of module A calling module 

B,  but no  parameters  passed  between  them  (neither  send,  nor received).  This  is  

strictly  should  be  positioned  at  zero  point  on  the  scale  of coupling (lower  than  

Normal  Coupling itself).  Two  modules  A  &B are  normally 



coupled if A calls B – B returns to A – (and) all information passed between them 

 

is by means of parameters passed through the call mechanism. The other two types of 

coupling (Common and content) are abnormal coupling and not desired. Even in Normal 

Coupling we should take care of following issues: 

➢   Data coupling can become complex if number of parameters communicated between is 

large. 

➢   In Stamp coupling there is always a danger of over-exposing irrelevant data 

 

to   called   module.   (Beware   of   the   meaning   of   composite   data.   Name 

represented as an array of characters may not qualify as a composite data. 

The meaning of composite data is the way it is used in the application NOT 

 

as represented in a program) 

 

➢   ―What-to-do  flags‖  are  not  desirable  when  it  comes  from  a  called  module 

 

(‗inversion of authority‘): It is alright to have calling module (by virtue of the fact,  is  a  

boss  in  the  hierarchical  arrangement)  know  internals  of  called module and not the 

other way around. 

In general, use of tramp data and hybrid coupling is not advisable. When data is passed up and 

down merely to send it to a desired module, the data will have no meaning at various levels. This 

will lead to tramp data. Hybrid coupling will result when  different  parts  of  flags  are  used  

(misused?)  to  mean  different  things  in different  places  (Usually  we  may  brand  it  

as  control  coupling  –  but  hybrid coupling  complicate  connections  between  

modules).  Two  modules  may  be coupled in more than one way. In such cases, their 

coupling is defined by the worst coupling type they exhibit. 

In object-oriented programming, coupling is a measure of how strongly one class 

 

is connected to another. 



Coupling is increased between two classes A and B if: 

 

➢   A has an attribute that refers to (is of type) B. 

 

➢   A calls on services of a B object. 

 

➢   A has a method which references B (via return type or parameter). 

 

➢    A is a subclass of (or implements) B. 

Disadvantages of high coupling include: 

➢   A change in one class forces a ripple of changes in other classes. 

 

➢   Difficult to understand a class in isolation. 

 

➢    Difficult  to  reuse  or  test  a  class  because  dependent  class  must  also  be 

included. 

 

One   measure   to   achieve   low   coupling   is   functional   design:   it   limits   the 

responsibilities of modules. Modules with single responsibilities usually need to communicate  

less  with  other  modules,  and  this  has  the  virtuous  side-effect  of reducing coupling and 

increasing cohesion in many cases. 

Cohesion 

 

Designers   should   aim   for   loosely   coupled   and   highly   cohesive   modules. 

Coupling  is  reduced  when  the  relationships  among  elements  not  in  the  same module  

are  minimized.  Cohesion  on  the  other  hand  aims  to  maximize  the relationships 

among elements in the same module. Cohesion is a good measure 

of  the  maintainability  of  a  module.  Modules  with  high  cohesion  tend  to  be 

preferable because high cohesion is associated with several desirable traits of software  

including  robustness,  reliability,  reusability,  and  understand  ability whereas low 

cohesion is associated with undesirable traits such as being difficult 

to  maintain,  difficult  to  test,  difficult  to  reuse,  and  even  difficult  to  understand. 

 

The types of cohesion, in order of lowest to highest, are as follows: 

 

1.  Coincidental Cohesion (Worst) 



 

2.  Logical Cohesion 

 

3.  Temporal Cohesion 

 

4.  Procedural Cohesion 

 

5.  Communicational Cohesion 

 

6.  Sequential Cohesion 

 

7.  Functional Cohesion (Best) 

 

Coincidental cohesion (worst) 

 

Coincidental  cohesion  is  when  parts  of  a  module  are  grouped  arbitrarily;  the parts   

have   no   significant   relationship   (e.g.   a   module   of   frequently   used functions). 

Logical cohesion 

 

Logical  cohesion  is  when  parts  of  a  module  are  grouped  because  of  a  slight relation  

(e.g.  using  control  coupling  to  decide  which  part  of  a  module  to  use, such as how to 

operate on a bank account). 

Temporal cohesion 

 

In  a  temporally  bound  (cohesion)  module,  the  elements  are  related  in  time. 

Temporal  cohesion  is  when  parts  of  a  module  are  grouped  by  when  they  are 

processed  - the parts are processed at a particular  time  in program  execution 

(e.g.  a  function  which  is  called  after  catching an  exception  which  closes  open 

 

files, creates an error log, and notifies the user). 

 

Procedural cohesion 

 

Procedural  cohesion  is  when  parts  of  a  module  are  grouped  because  they always 

follow a certain sequence of execution (e.g. a function which checks file permissions and then 

opens the file). 

Communicational cohesion 



 

Communicational cohesion is when parts of a module are grouped because they 

 

operate on the same data (e.g. a method updateStudentRecord which operates on a student 

record, but the actions which the method performs are not clear). Sequential cohesion 

Sequential cohesion is when parts of a module are grouped because the output from one part 

is the input to another part (e.g. a function which reads data from a file and processes the data). 

Functional cohesion (best) 

 

Functional  cohesion  is  when  parts  of  a  module  are  grouped  because  they  all contribute 

to a single well-defined task of the module (a perfect module). 

Since  cohesion  is  a  ranking  type  of  scale,  the  ranks  do  not  indicate  a  steady 

progression of improved cohesion. Studies by various people including Larry Constantine  and  

Edward  Yourdon  as  well  as  others  indicate  that  the  first  two types  of  cohesion  are  

much  inferior  to  the  others  and  that  module  with communicational cohesion or better 

tend to be much superior to lower types of cohesion. The seventh type, functional cohesion, is 

considered the best type. However,  while  functional  cohesion  is  considered  the  most  

desirable  type  of cohesion  for  a  software  module,  it  may  not  actually  be  achievable.  

There  are many  cases  where  communicational  cohesion  is  about  the  best  that  can  be 

attained  in  the  circumstances.  However  the  emphasis  of  a  software  design should be 

to maintain module cohesion of communicational or better since these types of cohesion are 

associated with modules of lower lines of code per module with  the  source  code  focused  on  

a  particular  functional  objective  with  less extraneous  or  unnecessary  functionality,  and  

tend  to  be  reusable  under  a greater variety of conditions. 



Example: Let us create a module that calculates average of marks obtained by students in a 

class: 

calc_stat(){read (x[]); a = average (x); print a} 

 

average (m){sum=0; for i = 1 to N { sum = sum + x[i]; } return (sum/N);} 

 

In average() above, all of the elements are related to the performance of a single function. Such a 

functional binding (cohesion) is the strongest type of binding. Suppose we need to calculate 

standard deviation also in the above problem, our pseudo code would look like: 

calc_stat(){ read (x[]); a = average (x); s = sd (x, a); print a, s;} 

average(m) // function to calculate average 

{sum =0; for i = 1 to N { sum = sum + x[i]; } return (sum/N);} 

 

sd (m, y) //function to calculate standard deviation 

 

{ …} 

Now,  though  average  ()  and  sd  ()  are  functionally  cohesive,  calc_stat()  has  a 

sequential  binding  (cohesion).  Like  a  factory  assembly  line,  functions  are 

arranged  in  sequence  and  output  from  average  ()  goes  as  an  input  to  sd(). 

Suppose  we  make  sd  ()  to  calculate  average  also,  then  calc_stat()  has  two 

functions  related  by  a  reference  to  the  same  set  of  input.  This  results  in 

communication cohesion. 

Let us make calc-stat() into a procedure as below: 

calc_stat(){ 

sum = sumsq = count = 

 

0 for i = 1 to N 

 

read (x[i]) 

 

sum = sum + x[i] 

 

sumsq = sumsq + x[i]*x[i] 



 

…} 

 

a = sum/N 

 

s = … // formula to calculate 

 

SD print a, s 

 

} 

 

Now,  instead  of  binding  functional  units  with  data,  calc-stat()  is  involved  in 

binding  activities  through  control  flow.  calc-stat()  has  made  two  statistical 

functions  into  a  procedure.  Obviously,  this  arrangement  affects  reuse  of  this module  

in  a  different  context  (for  instance,  when  we  need  to  calculate  only average not std. 

dev.). Such cohesion is called procedural. 

 

A good design for calc_stat () could be (Figure 6.1): 

 

 

 

 

 

Figure 6.1 

 

A logically cohesive module contains a number of activities of the same kind. To use the 

module, we may have to send a flag to indicate what we want (forcing various activities 

sharing the interface). Examples are a module that performs all input and output operations for 

a program. The activities in a logically cohesive module usually fall into same category 

(validate all input or edit all data) leading 

to  sharing of  common lines of  code (plate of  spaghetti?). Suppose  we  have a 



module  with  possible  statistical  measures  (average,  standard  deviation).  If  we want  to  

calculate  only  average,  the  call  to  it  would  look  like  calc_all_stat  (x[], flag). The flag is 

used to indicate out intent i.e. if flag=0 then function will return average, and if flag=1, it will 

return standard deviation. 

calc_stat(){ read (x[]); a = average (x); s = sd (x, a); print a, s;} 

calc_all_stat(m, flag) 

{ 

 

If flag=0{sum=0; for i = 1 to N { sum = sum + x[i]; }return 

 

 

(sum/N);} If flag=1{ …….; return sd; 

 

 

} 



Lesson-7 Design-II 

 

 

7.1 Introduction 

 

Design  is  a  process  in  which  representations  of  data  structure,  program 

structure, interface characteristics, and procedural details are synthesized from information  

requirements.  During  design  a  large  system  can  be  decomposed into  sub-systems  that  

provide  some  related  set  of  services.  The  initial  design process of identifying these sub-

systems and establishing a framework for sub- system control and communication is called 

architectural design. In architectural design  process  the  activities  carried  out  are  

system  structuring  (system  is decomposed into sub-systems and

 communications between them are 

identified), control modelling, modular decomposition. In a structured approach 

to design, the system is decomposed into a set of interacting functions. 

 

 

7.2 Structured Programming 

 

The goal of structured programming is to linearism control flow through a computer 

program so that the execution sequence follows the sequence in which  the  code  is  

written.  The  dynamic  structure  of  the  program  than resemble the

 static structure of the program. This enhances the 

readability, testability, and modifiability of the program. This linear flow of control can 

be achieved by restricting the set of allowed program construct 

to  single  entry,  single  exit  formats.  These  issues  are  discussed  in  the following 

section: 

 

Structure Rule One: Code Block 

 

If  the  entry  conditions  are  correct,  but  the  exit  conditions  are  wrong,  the  bug must be 

in the block. This is not true if execution is allowed to jump into a block. The bug might be 

anywhere in the program. Debugging under these conditions 



is much harder. 

 

Rule 1 of Structured Programming:  A code block is structured as shown in figure 7.1. In 

flow-charting terms, a box with a single entry point and single exit point  is  structured.  This  

may  look  obvious,  but  that  is  the  idea.  Structured programming is a way of making it 

obvious that program is correct. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 

 

 

 

 

 

 

 

 

 

 

 

 



Structure Rule Two: Sequence 

 

A sequence of blocks is correct if the exit conditions of each block match the entry  

conditions  of  the  following  block.  Execution  enters  each  block  at  the block's  entry  

point,  and  leaves  through  the  block's  exit  point.  The  whole sequence  can  be  

regarded  as  a  single  block,  with  an  entry  point  and  an  exit point. 

Rule 2 of Structured Programming: Two or more code blocks in sequence are structured as 

shown in figure 7.2. 

 

 

 

 

 

Figure 7.2 Rule 2: A sequence of code blocks is 

structured 



 

Structure Rule Three: Alternation 

 

If-then-else   is   sometimes   called   alternation   (because   there   are   alternative 

choices). In structured programming, each choice is a code block. If alternation is arranged as in 

the flowchart at right, then there is one entry point (at the top) and one exit point (at the bottom). 

The structure should be coded so that if the entry conditions  are  satisfied,  then  the  exit  

conditions  are  fulfilled  (just  like  a  code block). 

Rule  3  of  Structured  Programming:  The  alternation  of  two  code  blocks  is 

structured as shown in figure 7.3. 

An  example  of  an  entry  condition  for  an  alternation  structure  is:  register  $8 

contains a signed integer. The exit condition might be: register $8 contains the absolute value of 

the signed integer. The branch structure is used to fulfill the exit 

 

condition.  

 

 

 

 

Figure 7.3 Rule 3: An alternation of code blocks is 

structured 



 
 

 

 

Structure rule four - Iteration 

 

Iteration (while-loop) is arranged as at right. It also has one entry point and one exit  point.  

The  entry  point  has  conditions  that  must  be  satisfied  and  the  exit point has 

conditions that will be fulfilled. There are no jumps into the structure from external points of 

the code. 

Rule 4 of Structured Programming: The iteration of a code block is structured as shown in 

figure 7.4. 
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Figure 7.4 Rule 4: The 

iteration of code block is 

structured 



 

 

Structure Rule Five: Nesting Structures 

 

In  flowcharting  terms,  any  code  block  can  be  expanded  into  any  of  the 

structures. Or, going the other direction, if there is a portion of the flowchart that has a single 

entry point and a single exit point, it can be summarized as a single code block. 

Rule 5 of Structured Programming: A structure (of any size) that has a single entry point and a 

single exit point is equivalent to a code block. 

For example, say that you are designing a program to go through a list of signed 

 

integers calculating the absolute value of each one. You might (1) first regard the program as 

one block, then (2) sketch in the iteration required, and finally 

(3) put in the details of the loop body, as shown in figure 7.5. 

 

 

 

 

 

 

 

 

 

 

Figure 7.5 



 

Or, you might go the other way. Once the absolute value code is working, you can  regard  it  

as  a  single  code  block  to  be  used  as  a  component  of  a  larger program. 

You might think that these rules are OK for ensuring stable code, but that they are   too   

restrictive.   Some  power   must   be   lost.   But   nothing   is   lost.   Two researchers, 

Böhm and Jacopini, proved that any program could be written in a structured style. Restricting 

control flow to the forms of structured programming loses no computing power. 

The  other  control  structures  you  may  know,  such  as  case,  do-until,  do-while, and  for  

are  not  needed.  However,  they  are  sometimes  convenient,  and  are usually regarded 

as part of structured programming. In assembly language they add little convenience 



Lesson-8 Coding 

 

 

8.0 Objectives 

 

The objective of this lesson is to make the students familiar 

 

1.  With the concept of coding. 

 

2.  Programming Style 

 

3.  Verification and validations techniques. 

 

 

8.1 Introduction 

 

The coding is concerned with translating design specifications into source code. The  good  

programming  should  ensure  the  ease  of  debugging,  testing  and modification.   This   

is   achieved   by   making   the   source   code   as   clear   and straightforward as 

possible. An old saying is ―Simple is great‖. Simplicity, clarity and elegance are the hallmarks 

of  good programs. Obscurity, cleverness, and complexity are indications of inadequate design. 

Source code clarity is enhanced 

by structured coding techniques, by good coding style, by appropriate supporting documents, by 

good internal comments etc. Production of high quality software requires  that the 

programming team  should have  a thorough  understanding  of duties  and  responsibilities  

and  should  be  provided  with  a  well  defined  set  of requirements,   an   architectural   

design   specification,   and   a   detailed   design description. 

 

8.2 Programming style 

 

Programming  style  refers  to  the  style  used  in  writing  the  source  code  for  a 

computer program. Most programming styles are designed to help programmers quickly read 

and understands the program as well as avoid making errors. (Older programming styles  also 

focused on  conserving screen  space.)  A good coding style can overcome the many 

deficiencies of a primitive programming language, 



while poor style can defeat the intent of en excellent language. The goal of good programming 

style is to provide understandable, straightforward, elegant code. 

The  programming  style  used  in  a  particular  program  may  be  derived  from  the coding   

standards   or   code   conventions   of   a   company   or   other   computing organization, as 

well as the preferences of the actual programmer. Programming styles  are  often  designed  

for  a  specific  programming  language  (or  language family) and are not used in whole for 

other languages. (Style considered good in 

C source code may not be appropriate for BASIC source code, and so on.) Good style,  being  a  

subjective  matter,  is  difficult  to  concretely  categorize;  however, there are several elements 

common to a large number of programming styles. Programming styles are often designed for a 

specific programming language and 

are not used in whole for other languages. So there is no single set of rules that 

 

can be applied in every situation; however there are general guidelines that are widely applicable. 

These are listed below: 

Dos of good programming style 

 

1.  Use a few standards, agreed upon control constructs. 

 

2.  Use GOTO in a disciplined way. 

 

3.  Use user-defined data types to model entities in the problem domain. 

 

4.  Hide data structure behind access functions 

 

5.  Isolate machine dependencies in a few routines. 

 

6.  Use appropriate variable names 

 

7.  Use indentation, parentheses, blank spaces, and blank lines to enhance readability. 



➢  Use a few standard control constructs 

 

There  is  no  standard  set  of  constructs  for  structured  coding.  For  example  to implement 

loops, a number of constructs are available such as repeat-until. 

While-do,  for  loop  etc.  If  the  implementation  language  does  not  provide structured  

coding  constructs,  a  few  stylistic  patterns  should  be  used  by  the 

 

programmers.  This  will  make  coding  style  more  uniform  with  the  result  that programs 

will be easier to read, easier to understand, and easier to modify. 

➢  Use GOTO in a disciplined way 

 

The best time to use GOTO statement is never. In all the modern programming languages, 

constructs are available which help you in avoiding the use of GOTO statement, so if you are a 

good programmer then you can avoid the use of 

GOTO  statement.  But  if  it  is  warranted  then  the  acceptable  uses  of  GOTO 

 

statements are almost always forward transfers of control within a local region of 

 

code. Don‘t use GOTO to achieve backward transfer of control. 

 

➢  Use user-defined data types to model entities in the problem domain Use of distinct 

data types makes it possible for humans to distinguish between entities  from  the  problem  

domain.  All  the  modern  programming  languages provide the facilities of enumerated 

data type. For example, if an identifier is  to 

be used to represent the month of a year, then instead of using integer data type 

 

to  represent  it,  a  better  option  can  be  an  enumerated  data  type  as  illustrated below: 

enum month = (jan, feb, march, april, may, june, july, aug, sep, oct, nov, dec); month x; 

Variables x is declared of month type. Using such types makes the program much 

understandable. 

X = july; 



 

 

is more meaningful than 

 

x = 7; 

 

➢  Hide data structure behind access functions 

 

It  is  the  manifestation  of  the  principle  of  information  hiding.  It  is  the  approach taken in 

data encapsulation, wherein data structures and its accessing routines are  encapsulated  in  

a  single  module.  So  a  module  makes  visible  only  those features that are required by 

other modules. 

➢  Appropriate variable names 

 

 

Appropriate choices for variable names are seen as the keystone for good style. Poorly-named 

variables make code harder to read and understand. For example, consider the following pseudo 

code snippet: 

get a b c 

 

if a < 24 and b < 60 and c < 

 

60 return true 

else 

return false 

 

Because of the choice of variable names, the function of the code is difficult to work out. 

However, if the variable names are made more descriptive: 

get hours minutes seconds 

 

if hours < 24 and minutes < 60 and seconds < 60 

 

return true 

else 

return false 

the code's intent is easier to discern, namely, "Given a 24-hour time, true will be returned if it is a 

valid time and false otherwise." 



A  general  guideline  is  ―use  the  descriptive  names  suggesting  the  purpose  of identifier‖. 

➢  Use indentation, parentheses, blank spaces, and blank lines to enhance 

readability 

 

 

Programming styles commonly deal with the appearance of source code, with the goal  of  

improving  the  readability  of  the  program.  However,  with  the  advent  of software  that  

formats  source  code  automatically,  the  focus  on  appearance  will likely  yield  to  a  

greater  focus  on  naming,  logic,  and  higher  techniques.  As  a practical  point,  using  a  

computer  to  format  source  code  saves  time,  and  it  is possible to then enforce company-

wide standards without religious debates. 

➢  Indenting 

 

 

Indent styles assist in identifying control flow and blocks of code. In programming languages that 

use indentation to delimit logical blocks of code, good indentation style  directly affects the  

behavior  of  the resulting program.  In  other  languages, such as those that use brackets to 

delimit code blocks, the indent style does not directly  affect  the  product.  Instead,  using  a  

logical  and  consistent  indent  style makes one's code more readable. Compare: 

if (hours < 24 && minutes < 60 && seconds < 60){ 

 

return true; 

 

} else { return 

false; 



} 

 

or 

 

if (hours < 24 && minutes < 60 && seconds < 60) 

 

{ 

 

return true; 

 

} 

 

else 

 

{ 

 

return false; 

 

} 

 

with something like 

 

if (hours < 24 && minutes < 60 && seconds < 60) {return true;} 

 

else {return false;} 

 

The first two examples are much easier to read because they are indented well, and logical blocks 

of code are grouped and displayed together more clearly. 

This example is somewhat contrived, of course - all the above are more complex 

 

(less stylish) than 

 

return hours < 24 && minutes < 60 && seconds < 60; 

 

➢  Spacing 

 

 

Free-format languages often completely ignore white space. Making good use of spacing in one's 

layout is therefore considered good programming style. 

Compare the following examples of C code. int count; 



 

 

 

 

for(count=0;count<10;count++) 

 

{ 

 

printf("%d",count*count+count); 

 

} 

 

with 

 

int count; 

 

for( count = 0; count < 10; count++ ) 

 

{ 

 

printf( "%d", count * count + count); 

 

} 

 

In the C-family languages, it is also recommended to avoid using tab characters 

 

in the middle of a line as different text editors render their width differently. 

 

Python  uses  indentation  to  indicate  control  structures,  so  correct indentation  is required.  

By  doing  this,  the  need  for  bracketing  with  curly  braces  ({  and  })  is eliminated, and 

readability is improved while not interfering with common coding styles.  However,  this  

frequently  leads  to  problems  where  code  is  copied  and pasted   into   a   Python   

program,   requiring   tedious   reformatting.   Additionally, Python  code  is  rendered  

unusable  when  posted  on  a  forum  or  webpage  that removes white space. 

➢  Boolean values in decision structures 

 

 

Some programmers think decision structures such as the above, where the result 

 

 



of the decision is merely computation of a Boolean value, are overly verbose and 



even prone to error. They prefer to have the decision in the computation itself, like this: 

return hours < 12 && minutes < 60 && seconds < 60; 

 

The difference is often purely stylistic and syntactic, as modern compilers produce 

identical object code for both forms. 

➢  Looping and control structures 

 

 

The use of logical control structures for looping adds to good programming style 

 

as well. It helps someone reading code to understand the program's sequence of execution (in 

imperative programming languages). For example, in pseudocode: count = 0 

while count < 5 print 

count * 2 count = count 

+ 1 endwhile 

The above snippet obeys the two aforementioned style guidelines, but the following use of 

the "for" construct makes the code much easier to read: 

for count = 0, count < 5, count=count+1 

 

print count * 2 

 

In many languages, the often used "for each element in a range" pattern can be shortened to: 

for count = 0 to 5 

 

print count * 2 

 

➢  Examine routines having more than five formal parameters 

 

Parameters  are  used  to  exchange  the  information  among  the  functions  or routines. 

Use of more than five formal parameters gives a feeling that probably 



the function is complete. So it is to be carefully examined. The choice of number five   is   not   

arbitrary.   It   is   well   known   that   human   beings   can   deal   with approximately 

seven items at one time and ease of understanding a subprogram call or the body of 

subprogram is a function of the number of parameters. 

8.3 Don’ts of good programming style 

 

1. Don‘t be too clever. 

 

2. Avoid null Then statement 

 

3. Avoid Then If statement 

 

4. Don‘t nest too deeply. 

 

5. Don‘t use an identifier for multiple purposes. 

 

6. Examine routines having more than five formal parameters. 

 

➢  Don’t be too clever 

 

There is an old saying ―Simple engineering is great engineering‖. We should try 

 

to keep our program simple. By making the use of tricks and showing cleverness, sometimes  the  

complexity  is  increased.  This  can  be  illustrated  using  following example: 

//Code to swap the values of two integer 

variables. A=A+B; 

B=A-B; 

A=A-B; 

You can observe the obscurity in the above code. The better approach can be: 



T=A; 

A=B; 

B=T; 

The second version to swap the values of two inegers is more clear and simple. 

 

➢  Avoid null then statement 

 

A null then statement is of the form 

 

If B then ; else S; Which is 

equivalent to If (not B) the 

S; 

➢  Avoid then_If statement 

 

A then_if statement is of the form 

 

If(A>B) then 

if(X>Y) then 

A=X 

 

 

 

 

Else 

 

Endif 

Else 

 

Endif 

 

A=B 

 

B=Y 

 

Then_if statement tend to obscure the conditions under which various actions are 

 

performed. It can be rewritten in the following form: If(A<B) 

then 

A=B 

Elseif (X>Y) then 

B=Y 

Else 

 

Endif 

 

A=X 



➢   Don’t nest too deeply 

Consider the following code While X 

loop 

If Y then 

 

While Y loop 

While Z loop If 

W then S 

In the above code, it is difficult to identify the conditions under which statement S 

 

will be executed. As a general guideline, nesting of program constructs to depths greater than three 

or four levels should be avoided. 

➢  Don’t use an identifier for multiple purposes 

 

Using  an  identifier  for  multiple  purposes  is  a  dangerous  practice  because  it makes  

your   program   highly  sensitive   to   future  modification.  Moreover   the variable  names  

should  be  descriptive  suggesting  their  purposes  to  make  the program understandable. 

This is not possible if the identifier is used for multiple purposes. 

8.4 Software Verification and Validation Concepts and Definitions 

 

Software  Verification  and  Validation  (V&V)  is  the  process  of  ensuring  that 

software being developed or changed will satisfy functional and other 

requirements (validation) and each step in the process of building the software yields the 

right products (verification). The differences between verification and validation (shown in table 

8.1) are unimportant except to the theorist; 



practitioners‘ use the term V&V to refer to all of the activities that are aimed at 

 

making sure the software will function as required. 

 

V&V  is  intended  to  be  a  systematic  and  technical  evaluation  of  software  and 

associated  products  of  the  development  and  maintenance  processes.  Reviews and  tests  

are  done  at  the  end  of  each  phase  of  the  development  process  to ensure software 

requirements are complete and testable and that design, code, documentation, and data satisfy 

those requirements. 

Table 8.1 Difference between verification and validation 

 

Validation Verification 

Am I building the right product? Am I building the product right? 

 

 

Determining if the system complies 

 

with the requirements and performs 

 

functions for which it is intended and 

 

meets the organization‘s goals and 

 

user needs. It is traditional and is 

 

performed at the end of the project. 

The  review  of  interim  work steps   and 

 

interim  deliverables during   a project  to 

 

ensure they are acceptable. To determine 

 

if the system is consistent, adheres to 

 

standards, uses reliable techniques   and 

 

prudent practices, and performs the 

 

selected functions in the correct manner. 

Am I accessing the right data (in 

 

terms of the data required to satisfy 

 

the requirement) 

Am I accessing the data right (in the right 

 

place; in the right way). 

High level activity Low level activity 

Performed after a work product is 

 

produced against established 

Performed  during  development  on  key 

 

artifacts, like walkthroughs, reviews   and 



criteria  ensuring  that  the  product 

 

integrates correctly into the 

 

environment 

inspections,  mentor feedback,  training, 

 

checklists and standards 

Determination of correctness of the 

 

final software product by   a 

 

development project with respect to 

 

the user needs and requirements 

Demonstration of consistency, 

 

completeness,  and  correctness  of  the 

 

software at each stage and between each 

 

stage of the development life cycle.  

Activities 

 

The two major V&V activities are reviews, including inspections and 

walkthroughs, and testing. 

Reviews, Inspections, and Walkthroughs 

 

Reviews are conducted during and at the end of each phase of the life cycle to determine

 whether established requirements, design concepts, and 

specifications have been met. Reviews consist of the presentation of material to 

a  review  board  or  panel.  Reviews  are  most  effective  when  conducted  by 

personnel  who  have  not  been  directly  involved  in  the  development  of  the 

software being reviewed. 

Informal reviews are conducted on an as-needed basis. The developer chooses 

 

a  review  panel  and  provides  and/or  presents  the  material  to  be  reviewed.  The material 

may be as informal as a computer listing or hand-written documentation. Formal reviews are 

conducted at the end of each life cycle phase. The acquirer 

of  the  software  appoints  the  formal  review  panel  or  board,  who  may  make  or affect a 

go/no-go decision to proceed to the next step of the life cycle. Formal 



reviews include the Software Requirements Review, the Software Preliminary 

 

Design Review, the Software Critical Design Review, and the Software Test Readiness 

 

Review. 

 

An inspection or walkthrough is a detailed examination of a product on a step-by-step 

 

or  line-of-code  by  line-of-code  basis.  The  purpose  of  conducting  inspections  and 

walkthroughs  is  to  find  errors.  The  group  that  does  an  inspection  or  walkthrough  is 

composed of peers from development, test, and quality assurance. 



Lesson-9 Software Testing 

 

 

 

9.1 Introduction 

 

Until 1956 it was the debugging oriented period, where testing was often associated to debugging: there 

was no clear difference between testing and debugging. From 1957- 

1978 there was the demonstration oriented period where debugging and testing was distinguished   

now   -   in   this   period   it   was   shown,   that   software   satisfies   the requirements. The 

time between 1979-1982 is announced as the destruction oriented period,  where  the  goal  was  to  

find  errors.  1983-1987 is  classified  as  the  evaluation oriented period: intention here is that during 

the software lifecycle a product evaluation 

is provided and measuring quality. From 1988 on it was seen as prevention oriented 

 

period  where  tests  were  to  demonstrate  that  software  satisfies  its  specification,  to detect faults 

and to prevent faults. 

Software  testing  is  the  process  used  to  help  identify  the  correctness,  completeness, security, 

and quality of developed computer software. Testing is a process of technical investigation,  performed 

on behalf  of  stakeholders, that  is intended to  reveal quality- related information about the product 

with respect to the context in which it is intended 

to  operate. This  includes  the process  of  executing a program  or application  with  the 

 

intent of finding errors. Quality is not an absolute; it is value to some person. With that 

 

in mind, testing can never completely establish the correctness of arbitrary computer software;  

testing  furnishes  a  criticism  or  comparison  that  compares  the  state  and behaviour  of  the  

product  against  a  specification.  An  important  point  is  that  software testing  should  be  

distinguished  from   the  separate  discipline  of   software  quality assurance, which 

encompasses all business process areas, not just testing. 

There  are  many  approaches  to  software  testing,  but  effective  testing  of  complex products is 

essentially a process of investigation, not merely a matter of creating and 



following routine procedure. One definition of testing is "the process of questioning a product  in  

order  to  evaluate  it",  where  the  "questions"  are  operations  the  tester attempts  to  

execute  with  the  product,  and  the  product  answers  with  its  behavior  in reaction  to  the  

probing  of  the  tester.  Although  most  of  the  intellectual  processes  of testing are nearly identical 

to that of review or inspection, the word testing is connoted 

to mean the dynamic analysis of the product—putting the product through its paces. 

 

The  quality  of  the  application  can,  and  normally  does,  vary  widely  from  system  to system  

but  some  of  the  common  quality  attributes  include  capability,  reliability, efficiency,   

portability,   maintainability,   compatibility   and   usability.   A   good   test   is sometimes  

described  as  one  which  reveals  an  error;  however,  more  recent  thinking suggests that a good 

test is one which reveals information of interest to someone who matters within the project community. 

9.2.1 Error, fault and failure 

 

In general, software engineers distinguish software faults from software failures. 

 

In  case  of  a  failure,  the  software  does  not  do  what  the  user  expects.  A  fault  is  a 

programming bug that may or may not actually manifest as a failure. A fault can also 

be described as an error in the correctness of the semantic of a computer program. A 

 

fault  will  become  a  failure  if  the  exact  computation  conditions  are  met,  one  of  them being 

that the faulty portion of  computer software  executes on the CPU. A fault can also turn into a 

failure when the software is ported to a different hardware platform or a different compiler, or when the 

software gets extended. 

The term error is used to refer to the discrepancy between a computed, observed or measured value 

and the true, specified or theoretically correct value. Basically it refers 

to the difference between the actual output of a program and the correct output. 

 

Fault is a condition that causes a system to fail in performing its required functions. 



Failure  is  the  inability  of  a  system  to  perform  a  required  function  according  to  its 

specification. In case of a failure the observed behavior of the system is different from the specified 

behavior. Whenever there is a failure, there is a fault in the system but vice-versa  may  not  be  

true.  That  is,  sometimes  there  is  a  fault  in  the  software  but failure  is  not  observed.  Fault  is  

just  like  an  infection  in  the  body.  Whenever  there  is fever there is an infection, but sometimes 

body has infection but fever is not observed, 

9.2.2 Software Testing Fundamentals 

 

Software  testing  may  be  viewed  as  a  sub-field  of  software  quality  assurance  but 

typically exists independently (and there may be no SQA areas in some companies). In SQA, software 

process specialists and auditors take a broader view on software and its development.  They  examine  

and  change  the  software  engineering  process  itself  to reduce the amount of faults that end up in 

the code or deliver faster. 

Regardless  of  the  methods  used  or  level  of  formality  involved  the  desired  result  of testing is 

a level of confidence in the software so that the developers are confident that the software has an 

acceptable defect rate. What constitutes an acceptable defect rate depends on the nature of the 

software. 

A problem with software testing is that the number of defects in a software product can 

 

be  very large,  and the number of  configurations of  the product  larger  still.  Bugs that occur 

infrequently are difficult to find in testing. A rule of thumb is that a system that is expected to function 

without faults for a certain length of time must have already been tested for  at  least  that length  of  

time. This has  severe  consequences for  projects  to write long-lived reliable software. 

A common practice of software testing is that it is performed by an independent group of 

testers after the functionality is developed but before it is shipped to the customer. This practice 

often results in the testing phase being used as project 



buffer  to  compensate  for  project  delays.  Another  practice  is  to  start  software testing 

at the same moment the project starts and it is a continuous process until the project finishes. 

Another  common  practice  is  for  test  suites  to  be  developed  during  technical support  

escalation  procedures.  Such  tests  are  then  maintained  in  regression testing suites to 

ensure that future updates to the software don't repeat any of the known mistakes. 

 Time Detected 

Time 

Introduced 

Requirements Architecture Construction System 

Test 

Post- 

Release 
Requirements 1 3 5-10 10 10-100 

Architecture - 1 10 15 25-100 

Construction - - 1 10 10-25 

 

It is commonly believed that the earlier a defect is found the cheaper it is to fix it. 

 

In counterpoint, some emerging software disciplines such as extreme programming and the agile 

software development movement, adhere to a "test- 

driven software development" model. In this process unit tests are written first, by 

 

the programmers. Of course these tests fail initially; as they are expected to. 

 

Then as code is written it passes incrementally larger portions of the test suites. 

 

The  test  suites  are  continuously  updated  as  new  failure  conditions  and  corner cases 

are discovered, and they are integrated with any regression tests that are developed. 



It  tests  are  maintained  along  with  the  rest  of  the  software  source  code  and 

generally integrated into the build process (with inherently interactive tests being relegated to a 

partially manual build acceptance process). 

The software, tools, samples of data input and output, and configurations are all referred to 

collectively as a test harness. 

Testing is the process of finding the differences between the expected behavior specified by 

system models and the observed behavior of the system. Software testing  consists  of  the  

dynamic  verification  of  the  behavior  of  a  program  on  a finite  set  of  test  cases,  

suitably  selected  from  the  usually  infinite  executions domain, against the specified 

expected behavior. 

9.2.3 A sample testing cycle 

 

Although testing varies between organizations, there is a cycle to testing: 

 

1.  Requirements Analysis: Testing should begin in the requirements phase of the software 

development life cycle. 

2.  Design Analysis: During the design phase, testers work with developers in determining  

what  aspects  of  a  design  are  testable  and  under  what parameter those 

tests work. 

3.  Test Planning: Test Strategy, Test Plan(s), Test Bed creation. 

 

4.  Test Development: Test Procedures, Test Scenarios, Test Cases, Test 

 

Scripts to use in testing software. 

 

5.  Test  Execution:  Testers  execute  the  software  based  on  the  plans  and tests and 

report any errors found to the development team. 

6.  Test Reporting: Once testing is completed, testers generate metrics and make  final  

reports  on  their  test  effort  and  whether  or  not  the  software tested is ready for 

release. 



7.  Retesting the Defects 

 

9.2.4 Testing Objectives 

 

Glen Myres states a number of rules that can serves as testing objectives: 

 

➢   Testing is a process of executing a program with the intent of finding an error. 

➢   A good test case is one that has the high probability of finding an as-yet undiscovered 

error. 

➢   A successful test is one that uncovers an as-yet undiscovered error. 

 

9.2.5 Testing principles 

 

Davis suggested the following testing principles: 

 

✓   All tests should be traceable to customer requirements. 

 

✓   Tests should be planned long before testing begins. 

 

✓   The Pareto principle applies to software testing. According to this principle 

 

80 percent of all errors uncovered during testing will likely to be traceable 

 

to 20 percent of all program modules. The problem is to isolate these 20 

 

percent modules and test them thoroughly. 

 

✓   Testing  should  begin  ―in  the  small‖  and  progress  toward  testing  ―in  the 

 

large‖. 

 

✓   Exhaustive testing is not possible. 



✓   To be most effective, testing should be conducted by an independent third party. 

9.2.6 Psychology of Testing 

 

―Testing  cannot  show  the  absence  of  defects,  it  can  only  show  that  software errors  

are  present‖.  So  devising  a  set  of  test  cases  that  will  guarantee  that  all errors will be 

detected is not feasible. Moreover, there are no formal or precise methods for selecting test 

cases. Even though, there are a number of heuristics and  rules  of  thumb  for  deciding  the  

test  cases,  selecting  test  cases  is  still  a creative activity that relies on the ingenuity of 

the tester. Due to this reason, the psychology of the person performing the testing becomes 

important. 

The aim of testing is often to demonstrate that a program works by showing that 

 

it has no errors. This is the opposite of what testing should be viewed as. The basic purpose 

of the testing phase is to detect the errors that may be present in the program. Hence, one 

should not start testing with the intent of showing that a program works; but the intent should be 

to show that a program does not work. With this in mind, we define testing as follows: testing is 

the process of executing 

a program with the intent of finding errors. 

 

This emphasis on proper intent of testing is a trivial matter because test cases are designed 

by human beings, and human beings have a tendency to perform actions to achieve the goal 

they have in mind. So, if the goal is to demonstrate that a program works, we may 

consciously or subconsciously select test cases that  will  try  to  demonstrate  that  goal  

and  that  will  beat  the  basic  purpose  of testing. On the other hand, if the intent is to show 

that the program does not 



work, we will challenge our intellect to find test cases towards that end, and we are  likely  to  

detect  more  errors.  Testing  is  the  one  step  in  the  software engineering process 

that could be viewed as destructive rather than constructive. 

In it the engineer creates a set of test cases that are intended to demolish the software.  

With  this  in  mind,  a  test  case  is  "good"  if  it  detects  an  as-yet- undetected 

error in the program, and our goal during designing test cases should 

be to design such "good" test cases. 

 

Due to these reasons, it is said that the creator of a program (i.e. programmer) should  not  

be  its  tester  because  psychologically  you  cannot  be  destructive  to your own creation. 

Many organizations require a product to be tested by people not  involved  with  developing  

the  program  before  finally  delivering  it  to  the customer. Another reason for 

independent testing is that sometimes errors occur because the programmer did not understand 

the specifications clearly. Testing of 

a program by its programmer will not detect such errors, whereas independent testing may 

succeed in finding them. 

9.2.7 Test Levels 

 

• Unit  testing:  It  tests  the  minimal  software  item  that  can  be  tested.  Each 

component is tested independently. 

• Module testing: A module is a collection of dependent components. So it is component  

integration  testing  and  it  exposes  defects  in  the  interfaces  and interaction between 

integrated components. 



 
 

• Sub-system testing: It involves testing collection of modules which have been integrated into 

sub-systems. The sub-system test should concentrate on the detection of interface errors. 

• System  testing:  System  testing  tests  an  integrated  system  to  verify  that  it meets its 

requirements. It is concerned with validating that the system meets 

its functional and non-functional requirements. 

 

• Acceptance  testing:  Acceptance  testing  allows  the  end-user  or  customer  to decide 

whether or not to accept the product. 
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Figure 9.1 Test levels 

 

9.2.8 SYSTEM TESTING 

 

System testing involves two kinds of activities: integration testing and acceptance testing. 

Strategies for integrating software components into a functioning product include the bottom-up 

strategy, the top-down strategy, and the sandwich 



strategy.  Careful  planning  and  scheduling are  required  to  ensure that  modules will be 

available for integration into the evolving software product when needed. 

The integration strategy dictates the order in which modules must be available, and  thus  

exerts  a  strong  influence  on  the  order  in  which  modules  are  written, debugged, and unit 

tested. 

Acceptance testing involves planning and execution of functional tests, 

performance  tests,  and  stress  tests  to  verify  that  the  implemented  system 

satisfies its requirements. Acceptance tests are typically performed by the quality assurance  

and/or  customer  organizations.  Depending  on  local  circumstances, the  development  

group  may  or  may  not  be  involved  in  acceptance  testing. Integration   testing   and   

acceptance   testing   are   discussed   in   the   following sections. 

9.2.8.1 Integration Testing 

 

Three are two important variants of integration testing, (a) Bottom-up integration and top-down 

integration, which are discussed in the following sections: 

9.2.8.1.1 Bottom-up integration 

 

Bottom-up integration is the traditional strategy used to integrate the components 

 

of a software system into a functioning whole. Bottom-up integration consists of unit  testing,  

followed  by  subsystem  testing,  followed  by  testing  of  the  entire system. Unit testing 

has the goal of discovering errors in the individual modules 

of  the  system.  Modules  are  tested  in  isolation  from  one  another  in  an  artificial 

environment  known  as  a  "test  harness,"  which  consists  of  the  driver  programs and data 

necessary to exercise the modules. Unit testing should be as 



exhaustive as possible to ensure that each representative case handled by each module  has  

been  tested.  Unit  testing  is  eased  by  a  system  structure  that  is composed  of  small,  

loosely coupled modules.  A  subsystem  consists  of  several modules that communicate with each 

other through well-defined interfaces. Normally,  a  subsystem  implements  a  major  segment  of  

the  total  system.  The primary purpose of subsystem testing is to verify the operation of the 

interfaces between  modules  in  the  subsystem.  Both  control  and  data  interfaces  must  be 

tested.  Large  software  may  require  several  levels  of  subsystem  testing;  lower- level 

subsystems are successively combined to form higher-level subsystems. In most  software  

systems,  exhaustive  testing  of  subsystem  capabilities  is  not feasible due to the 

combinational complexity of the module interfaces; therefore, test  cases  must  be  carefully  

chosen  to  exercise  the  interfaces  in  the  desired manner. 

System  testing  is  concerned  with  subtleties  in  the  interfaces,  decision  logic, control

 flow, recovery procedures, throughput; capacity, and timing 

characteristics of the entire system. Careful test planning is required to determine the extent and 

nature of system testing to be performed and to establish criteria 

by which the results will be evaluated. 

 

Disadvantages of bottom-up testing include the necessity to write and debug test harnesses  for  

the  modules  and  subsystems,  and  the  level  of  complexity  that result from combining 

modules and subsystems into larger and larger units. The extreme case of complexity results 

when each module is unit tested in isolation and all modules are then linked and executed in 

one single integration run. This 



 
 

is the "big bang" approach to integration testing. The main problem with big-bang integration is the 

difficulty of isolating the sources of errors. 

Test   harnesses   provide   data   environments   and   calling   sequences  for   the 

routines  and   subsystems   that  are  being  tested   in   isolation.  Test   harness 

preparation can amount to 50 percent or more of the coding and debugging effort for a software 

product. 

9.2.8.1.2 Top-down integration 

 

Top-down  integration  starts  with  the  main  routine  and  one  or  two  immediately 

subordinate  routines  in  the  system  structure.  After  this  top-level  "skeleton"  has been   

thoroughly   tested,   it   becomes   the   test   harness   for   its   immediately subordinate 

routines. Top-down integration requires the use of program stubs to simulate the effect of lower-

level routines that are called by those being tested. 
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SUB1 SUB2 

 

 

Figure 9.2 

 

1. Test MAIN module, stubs for GET, PROC, and PUT are required. 

 

2. Integrate GET module and now test MAIN and GET 

 

3. Integrate PROC, stubs for SUBI, SUB2 are required. 

 

4. Integrate PUT, Test MAIN, GET, PROC, PUT 

 

5. Integrate SUB1 and test MAIN, GET, PROC, PUT, SUBI 



6. Integrate SUB2 and test MAIN, GET, PROC, PUT, SUBI, SUB2 

 

Above Figure 9.2 illustrates integrated top-down integration testing. Top-down 

integration offers several advantages: 

1.   System  integration  is  distributed  throughout  the  implementation  phase. Modules 

are integrated as they are developed. 

2.   Top-level interfaces are tested first and most often. 

 

3.   The top-level routines provide a natural test harness for lower-Level routines. 

 

4.   Errors are localized to the new modules and interfaces that are being added. While  it  may  

appear  that  top-down  integration  is  always  preferable,  there  are many situations in which 

it is not possible to adhere to a strict top-down coding and integration strategy. For example, 

it may be difficult to find top-Level input data that will exercise a lower level module in a 

particular desired manner. Also, the  evolving  system  may  be  very  expensive  to  run  as  a  

test  harness  for  new routines; it may not be cost effective to relink and re-execute a system 

of 50 or 

100 routines each time a new routine is added. Significant amounts of machine time can often 

be saved by testing subsystems in isolation before inserting them into  the  evolving top-down  

structure.  In  some  cases,  it  may not  be  possible  to use  program  stubs  to  simulate  

modules  below  the  current  level  (e.g.  device drivers, interrupt handlers). It may be 

necessary to test certain critical low-level modules first. 

The  sandwich  testing  strategy  may  be  preferred  in  these  situations.  Sandwich 

integration  is  predominately  top-down,  but  bottom-up  techniques  are  used  on some 

modules and subsystems. This mix alleviates many of the problems 



encountered  in  pure  top-down  testing  and  retains  the  advantages  of  top-down integration at 

the subsystem and system level. 

9.2.8.2 Regression testing 

 

After modifying software, either for a change in functionality or to fix defects, a regression  

test  re-runs  previously  passing  tests  on  the  modified  software  to ensure  that  the  

modifications  haven't  unintentionally  caused  a  regression  of previous functionality. 

Regression testing can be performed at any or all of the above test levels. These regression 

tests are often automated. 

In integration testing also, each time a module is added, the software changes. New data flow 

paths are established, new I/O may occur, and new control logic is invoked. Hence, there is the 

need of regression testing. 

Regression  testing  is  any  type  of  software  testing  which  seeks  to  uncover 

regression  bugs.  Regression  bugs  occur  whenever  software  functionality  that previously 

worked as desired stops working or no longer works in the same way that was previously 

planned. Typically regression bugs occur as an unintended consequence of program changes. 

Common  methods  of  regression  testing  include  re-running  previously  run  tests and checking 

whether previously fixed faults have reemerged. 

Experience has shown that as software is developed, this kind of reemergence of faults is quite 

common. Sometimes it occurs because a fix gets lost through poor revision control practices (or 

simple human error in revision control), but just as often a fix for a problem will be "fragile" - i.e. 

if some other change is made to the program, the fix no longer works. Finally, it has often been 

the case that when 



some feature is redesigned, the same mistakes will be made in the redesign that were made in the 

original implementation of the feature. 

Therefore, in most software development situations it is considered good practice that when a 

bug is located and fixed, a test that exposes the bug is recorded and regularly retested after 

subsequent changes to the program. Although this may 

be done through manual testing procedures using programming techniques, it is often  done  

using  automated  testing  tools.  Such  a  'test  suite'  contains  software tools that allows the 

testing environment to execute all the regression test cases automatically; some projects even 

set up automated systems to automatically re- run   all   regression   tests   at   specified   

intervals   and   report  any  regressions. Common strategies are to run such a system after 

every successful compile (for small projects), every night, or once a week. 

Regression  testing  is  an  integral  part  of  the  extreme  programming  software 

development methodology. In this methodology, design documents are replaced 

by extensive, repeatable, and automated testing of the entire software package 

 

at every stage in the software development cycle. 

 

Uses of regression testing 

 

Regression testing can be used not only for testing the correctness of a program, but  it  is  also  

often  used  to  track  the  quality  of  its  output.  For  instance  in  the design  of  a  

compiler,  regression  testing  should  track  the  code  size,  simulation time, and compilation 

time of the test suites. 

System testing is a series of different tests and each test has a different purpose but all work to 

verify that all system elements have been properly integrated and 



perform allocated functions. In the following part a number of other system tests have been 

discussed. 

9.2.8.3 Recovery testing 

 

Many systems must recover from faults and resume processing within a specified time. Recovery 

testing is a system test that forces the software to fail in a variety 

of ways and verifies that recovery is properly performed. 

 

9.2.8.4 Stress testing 

 

Stress tests are designed to confront programs with abnormal situations. Stress testing  

executes  a  program  in  a  manner  that  demands  resources  in  abnormal quantity,  

frequency,  or  volume.  For  example,  a  test  case  that  may  cause thrashing in a 

virtual operating system. 

9.2.8.5 Performance Testing 

 

For real time and embedded systems, performance testing is essential. In these systems, the 

compromise on performance is unacceptable. Performance testing 

is  designed  to  test  run-time  performance  of  software  within  the  context  of  an integrated 

system. 

9.2.9 Acceptance testing 

 

Acceptance testing involves planning and execution of functional tests, 

performance tests, and stress tests in order to demonstrate that the implemented system   

satisfies   its   requirements.   Stress   tests   are   performed   to   test   the limitations of 

the systems. For example, a compiler may be tested to determine the effect of symbol table 

overflow. 



Acceptance  test  will  incorporate  test  cases  developed  during  unit  testing  and 

integration testing. Additional test cases are added to achieve the desired level of functional, 

performance and stress testing of the entire system. 

9.2.9.1 Alpha testing 

 

Alpha testing is simulated or actual operational testing by potential 

users/customers  or  an  independent  test  team  at  the  developers‘  site.  Alpha testing   

is   often   employed   for   off-the-shelf   software   as   a   form   of   internal acceptance 

testing, before the software goes to beta testing. 

9.2.9.2 Beta testing 

 

Beta testing comes after alpha testing. Versions of the software, known as beta versions,  are  

released  to  a  limited  audience  outside  of  the  company.  The software is released 

to groups of people so that further testing can ensure the product has few faults or bugs. 

Sometimes, beta versions are made available to the  open  public  to  increase  the  feedback  

field  to  a  maximal  number  of  future users. 

 

9.3 White-box and black-box testing 

 

White box and black box testing are terms used to describe the point of view a test engineer 

takes when designing test cases. Black box is an external view of the test object and white box, 

an internal view. 

In  recent  years  the  term  grey  box  testing  has  come  into  common  usage.  The 

 

typical   grey   box   tester   is   permitted   to   set   up   or   manipulate   the   testing 

environment, like seeding a database, and can view the state of the product after her  actions,  

like  performing  a  SQL  query  on  the  database  to  be certain  of  the values of columns. It is 

used almost exclusively of client-server testers or others 

who use a database as a repository of information, but can also apply to a tester 



who  has  to  manipulate  XML  files  (DTD  or  an  actual  XML  file)  or  configuration files  

directly.  It  can  also  be  used  of  testers  who  know  the  internal  workings  or algorithm  of  

the  software  under  test  and  can  write  tests  specifically  for  the anticipated  results.  

For  example,  testing  a  data  warehouse  implementation involves   loading   the   

target   database   with   information,   and   verifying   the correctness of data population 

and loading of data into the correct tables. 

White box testing 

 

White box testing (also known as clear box testing, glass box testing or structural testing) uses 

an internal perspective of the system to design test cases based on internal structure. It requires 

programming skills to identify all paths through the software.   The   tester   chooses   test   

case   inputs   to   exercise   all   paths   and determines the appropriate outputs. In electrical 

hardware testing every node in a circuit may be probed and measured, an example is In circuit 

test (ICT). 

Since  the  tests  are  based  on  the  actual  implementation,  if  the  implementation changes, 

the tests probably will need to also. For example ICT needs updates if component values 

change, and needs modified/new fixture if the circuit changes. This adds financial resistance to 

the change process, thus buggy products may stay  buggy.  Automated  optical  inspection  

(AOI)  offers  similar  component  level correctness  checking  without  the  cost  of  ICT  

fixtures,  however  changes  still require test updates. 

While white box testing is applicable at the unit, integration and system levels, it's typically applied to 

the unit. So while it normally tests paths within a unit, it can 



also test paths between units during integration, and between subsystems during 

 

a   system   level   test.  Though   this  method   of   test  design   can   uncover   an 

overwhelming number of test cases, it might not detect unimplemented parts of the  

specification  or  missing  requirements.  But  you  can  be  sure  that  all  paths through the 

test object are executed. 

Typical white box test design techniques include: 

 

➢ Control flow testing 

 

➢ Data flow testing 

 

Code coverage 

 

The most common structure based criteria are based on the control flow of the program. In 

this criterion, a control flow graph of the program is constructed and coverage of  various 

aspects of the graph is specified as criteria. A control flow graph of program consists of nodes 

and edges. A node in the graph represents a block of statement that is always executed 

together. An edge frm node i to node j represents a possible transfer of control after executing 

the last statement in the block  represented  by  node  i  to  the  first  statement  of  the  block  

represented  by node j. Three common forms of code coverage used by testers are statement 

(or line) coverage, branch coverage, and path coverage. Line coverage reports on the 

execution footprint of testing in terms of which lines of code were executed to complete the test. 

According to this criterion each statement of the program to be tested  should  be  executed  at  

least  once.  Using  branch  coverage  as  the  test criteria,  the  tester  attempts  to  find  a  

set  of  test  cases  that  will  execute  each branching statement in each duirection at least 

once. A path coverage criterion 



 
 

 
 

acknowledges that the order in which the btanches are executed during a test 

 

(the path traversed)  is an important factor in determining the test outcome.  So tester 

attempts to find a set of test cases that ensure the traversal of each logical path in the control 

flow graph. 

A Control Flow Graph (CFG) is a diagrammatic representation of a program and 

 

its  execution.  A  CFG  shows  all  the  possible  sequences  of  statements  of  a program. 

CFGs consist of all the typical building blocks of any flow diagrams. 

There is always a start node, an end node, and flows (or arcs) between nodes. 

 

Each node is labeled in order for it to be identified and associated correctly with its corresponding 

part in the program code. 

CFGs allow for constructs to be nested in order to represent nested loops in the 

 

 

actual code. Some examples are given below in figure 9.3.1: 
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Figure 9.3.1 

 

In programs where while loops exist, there are potentially an infinite number of unique paths 

through the program. Every path through a program has a set of associated conditions. 

Finding out what these conditions are allows for test data 

to be created. This enables the code to be tested to a suitable degree. 



 
 

 
 

 
 

 

 

 

The conditions that exist for a path through a program are defined by the values 

 

of variable, which change through the execution of the code. At any point in the program 

execution, the program state is described by these variables. 

Statements  in  the  code  such  as  "x  =  x  +  1"  alter  the  state  of  the  program  by 

changing  the  value  of  a  variable  (in  this  case,  x).  Infeasible  paths  are  those paths,  

which  cannot  be  executed.  Infeasible  paths  occur  when  no  values  will satisfy the path 

constraint. 

Example: 

 

//Program to find the largest of three 

numbers: input a,b,c; 

max=a; 

 

if (b>max) max=b; 

if(c=max)   max=c; 

output max; 

The control flow graph of this program is given below in figure 9.3.2. In this flowgraph node 1 

represents the statements [input a,b,c;max=a;if(b>max)], node 

2 represents [max=b], node 3 represents [if(c>max)], node 4 represents [max=c] 

 

and node 5 represents [output max]. 
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Figure 9.3.2 



To ensure the Statement coverage [1, 2, 3, 4, 5] one test case a=5, b=10, and c=15 is sufficient. 

To ensure Branch coverage [1, 3, 5] and [1, 2, 3, 4, 5], two test cases are required (i) a=5, 

b=10, c=15 and (ii) a=15, b=10, and c=5. 

To ensure Path coverage ([1,2,3,4,5], [1,3,5], [1,2,3,5], and [1,3,4,5]), four test cases are 

required: 

(i) a=5, b=10, c=15 

 

(ii) a=15, b=10, and c=5. 

 

(iii) a=5, b=10, and c=8 

 

(iv) a=10, b=5, c=15 

 

Path coverage criteria leads to a potentially infinite number of paths, some efforts have been 

made to limit the number of paths to be tested. One such approach is the  cyclomatic  

complexity.  The  cyclomatic  complexity  of  a  path  represents  the logically  independent  

path  in  a  program  as  in  the  above  case  the  cyclomatic complexity   is   three   so   

three   test   cases   are   sufficient.   As   these   are   the independent paths, all other paths 

can be represented as a combination of these basic paths. 

Data Flow testing 

 

The data flow testing is based on the information about where the variables are defined  and  

where  the  definitions  are  used.  During  testing  the  definitions  of variables and their 

subsequent use is tested. Data flow testing looks at how data moves  within  a  program.  

There  are  a  number  of  associated  test  criteria  and these should complement the control-

flow criteria. Data flow occurs through 



assigning a  value  to a  variable  in  one  place  accessing that a  value  in  another place. 

To illustrate the data flow based testing; let us assume that each statement in the program has 

been assigned a unique statement number and that each function does not modify its 

parameters or global variables. For a statement with S as its statement number, 

DEF(S) = { X| statement S contains a definition of X} USE(S) = { 

X | statement S contains a use of X} 

If statement S is an if or loop statement, its DEF set is empty and its USE set is based on the 

condition of statement S. The definition of variable X is said to be live at the statement S‘ if 

there exists a path from statement S to statement S‘ that does not contain any other definition 

of X. A Definition Use chain (DU chain) 

of variable X is of the form [X, S, S‘], where S and S‘ are statement numbers, X is 

 

in DEF(S) and USE(S‘), and the definition of X in the statement S is live at the statement S‘. 

One  simple  data  flow  testing  strategy  is  to  require  that  every  DU  chain  be covered 

at least once. This strategy is known as DU testing strategy. 

Loop testing 

 

Loops are very important constructs for generally all the algorithms. Loop testing 

 

is  a  white  box  testing  technique.  It  focuses  exclusively  on  the  validity  of  loop 

constructs.  Four  different  types  of  loops  are:  simple  loop,  concatenated  loop, nested 

loop, and unstructured loop as shown in figure 9.3.3. 



 
 

Simple loop: The following set of tests should be applied to simple loop where n 

 

is the maximum number of allowable passes thru the loop: 

 

- Skip the loop entirely. 

 

- Only one pass thru the loop. 

 

- Two passes thru the loop. 

 

- M passes thru the loop where m < n. 

 

- N-1, n, n+1 passes thru the loop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Simple loop Nested loop Concatenated loop Unstructured loop 

 

Figure 9.3.3 

 

Nested loop: Beizer approach to the nested loop is: 

 

- Start at the innermost loop. Set all other loops to minimum value. 

 

- Conduct the simple loop test for the innermost loop while holding the outer loops at their 

minimum iteration parameter value. 



- Work outward, conducting tests for next loop, but keeping all other outer loops at 

minimum values and other nested loops to typical values. 

- Continue until all loops have been tested. 

 

Concatenated loops: These can be tested using the approach of simple loops if each loop is 

independent of other. However, if the loop counter of loop 1 is used 

as the initial value for loop 2 then approach of nested loop is to be used. 

 

Unstructured loop: This class of loops should be redesigned to reflect the use 

 

of the structured programming constructs. 

 

9.4 Black Box testing 

 

Black box testing takes an external perspective of the test object to derive test cases. These 

tests can be functional or non-functional, though usually functional. The  test  designer  selects  

valid  and  invalid  input  and  determines  the  correct output. There is no knowledge of the 

test object's internal structure. 

This  method  of  test  design  is  applicable  to  all  levels  of  development  -  unit, 

integration, system and acceptance. The higher the level, and hence the bigger and more 

complex the box, the more we are forced to use black box testing to simplify. While this

 method can uncover unimplemented parts of the 

specification, you can't be sure that all existent paths are tested. Some common approaches  of  

black  box  testing  are  equivalence  class  partitioning,  boundary value analysis etc. 

Equivalence class partitioning 

 

Equivalence partitioning is software testing related technique with the 

 

 

goal: 1. To reduce the number of test cases to a necessary minimum. 



2.  To select the right test cases to cover all possible scenarios. 

 

Although  in  rare  cases  equivalence  partitioning  is  also  applied  to  outputs  of  a software 

component, typically it is applied to the inputs of a tested component. The  equivalence  

partitions  are  usually  derived  from  the  specification  of  the component's  behaviour.  

An  input  has  certain  ranges  which  are  valid  and other ranges which are invalid. This may 

be best explained at the following example of 

a function which has the pass parameter "month" of a date. The valid range for the month is 1 to 

12, standing for January to December. This valid range is called 

a partition. In this example there are two further partitions of invalid ranges. The first invalid 

partition would be <= 0 and the second invalid partition would be >= 

13. 

 

-2, -1, 0 1,2,……..12 13, 14, 15 

Invalid partition 1 Valid partition Invalid partition 2 

The testing theory related to equivalence partitioning says that only one test case 

 

of  each  partition  is  needed  to  evaluate  the  behaviour  of  the  program  for  the related 

partition. In other words it is sufficient to select one test case out of each partition  to  check  

the  behaviour  of  the  program.  To  use  more  or  even  all  test cases of a partition will not 

find new faults in the program. The values within one partition are considered to be "equivalent". 

Thus the number of test cases can be reduced considerably. 

An additional effect by applying this technique is that you also find the so called 

 

"dirty" test cases. An inexperienced tester may be tempted to use as test cases the input data 1 to 

12 for the month and forget to select some out of the invalid 



partitions. This would lead to a huge number of unnecessary test cases on the one hand, and a 

lack of test cases for the dirty ranges on the other hand. 

The  tendency  is  to  relate  equivalence  partitioning  to  the  so  called  black  box testing 

which  is  strictly checking a  software  component at  its interface,  without consideration of 

internal structures of the software. But having a closer look on the subject there are cases 

where it applies to the white box testing as well. 

Imagine an interface to a component which has a valid range between 1 and 12 like   in   the   

example   above.   However   internally   the   function   may   have   a differentiation  of  

values  between  1  and  6  and  the  values  between  7  and  12. Depending  on  the  input  

value  the  software  internally  will  run  through  different paths  to  perform  slightly  

different  actions.  Regarding  the  input  and  output interfaces to the component this 

difference will not be noticed, however in your white-box testing you would like to make sure 

that both paths are examined. To achieve this it is necessary to introduce additional 

equivalence partitions which would not be needed for black-box testing. For this example this 

would be: 

-2, -1, 0 1,…..6 7,……12 13, 14, 15 

 

Invalid Partition 1 

P1 P2  

Invalid Partition 2 

Valid  Partition 

To check for the expected results you would need to evaluate some internal intermediate 

values rather than the output interface. 

Equivalence partitioning is no stand alone method to determine test cases. It has 

 

 

to be supplemented by boundary value analysis. Having determined the 



 

 

partitions  of  possible  inputs  the  method  of  boundary  value  analysis  has  to  be 

 

applied to select the most effective test cases out of these partitions. 

 

Boundary value analysis 

 

Boundary value analysis is software testing related technique to determine test cases covering 

known areas of frequent problems at the boundaries of software component  input  ranges.  

Testing  experience  has  shown  that  especially  the boundaries  of  input  ranges  to  a  

software  component  are  liable  to  defects.  A programmer who has to implement e.g. the 

range 1 to 12 at an input, which e.g. stands  for  the  month  January  to  December  in  a  

date,  has  in  his  code  a  line checking for this range. This may look like: 

if (month > 0 && month < 13) 

 

But  a  common  programming  error  may  check  a  wrong  range  e.g.  starting  the range at 0 

by writing: 

if (month >= 0 && month < 13) 

 

For more complex range checks in a program this may be a problem which is not so easily spotted 

as in the above simple example. 

Applying boundary value analysis 

 

To set up boundary value analysis test cases you first have to determine which boundaries 

you have at the interface of a  software  component. This  has to be done   by   applying   

the   equivalence   partitioning   technique.   Boundary   value analysis  and  equivalence  

partitioning  are  inevitably  linked  together.  For  the example of the month in a date you 

would have the following partitions: 

-2, -1, 0 1,2,……..12 13, 14, 15 



Invalid partition 1  Valid partition  Invalid partition 2 

 

Applying  boundary  value  analysis  you  have  to  select  now  a  test  case  at  each side of the 

boundary between two partitions. In the above example this would be 

0 and 1 for the lower boundary as well as 12 and 13 for the upper boundary. 

 

Each of these pairs consists of a "clean" and a "dirty" test case. A "clean" test case should 

give you a valid operation result of your program. A "dirty" test case should lead to a correct and 

specified input error treatment such as the limiting of values,  the  usage  of  a  substitute  

value,  or  in  case  of  a  program  with  a  user interface,  it  has  to  lead  to  warning  

and  request  to  enter  correct  data.  The boundary value analysis can have 6 

textcases.n,n-1,n+1 for the upper limit and n,n-1,n+1 for the lower limit. 

A  further  set  of  boundaries  has  to  be  considered  when  you  set  up  your  test cases. 

A solid testing strategy also has to consider the natural boundaries of the data  types  used  in  

the  program.  If  you  are  working  with  signed  values  this  is especially the range around 

zero (-1, 0, +1). Similar to the typical range check faults  programmers  tend  to  have  

weaknesses  in  their  programs  in  this  range. E.g. this could be a division by zero problems 

when a zero value is  possible to occur although the programmer always thought the range 

starting at 1. It could 

be  a  sign  problem  when  a  value  turns out  to  be  negative  in  some  rare  cases, although 

the programmer always expected it to be positive. Even if  this critical natural  boundary  is  

clearly  within  an  equivalence  partition  it  should  lead  to additional test cases checking 

the range around zero. A further natural boundary 

is the natural lower und upper limit of the data type itself. E.g. an unsigned 8-bit 



 

 

 

value has the range of 0 to 255. A good test strategy would also check how the 

 

program reacts at an input of -1 and 0 as well as 255 and 256. 

 

The  tendency is  to  relate  boundary value  analysis  more  to  the  so  called  black box  

testing  which  is  strictly  checking  a  software  component  at  its  interfaces, without 

consideration of internal structures of the software. But having a closer look on the subject 

there are cases where it applies also to white box testing. 

After determining the necessary test cases with equivalence partitioning and the subsequent 

boundary value analysis it is necessary to define the combinations of the test cases in case of 

multiple inputs to a software component. 

Cause-Effect Graphing 

 

One  weakness  with  the  equivalence  class  partitioning  and  boundary  value 

methods is that they consider each input separately. That is, both concentrate on the conditions 

and classes of  one input. They do not consider combinations of input  circumstances  that  

may  form  interesting  situations  that  should  be  tested. One way to exercise combinations of 

different input conditions is to consider all valid  combinations  of  the  equivalence  classes  of  

input  conditions.  This  simple approach will result in an unusually large number of test 

cases, many of which will  not  be  useful  for  revealing  any  new  errors.  For  example,  

if  there  are  n different  input  conditions,  such  that  any  combination  of  the  input  

conditions  is valid, we will have 2
n 

test cases. 

Cause-effect graphing is a technique that aids in selecting combinations of input conditions  in  a  

systematic  way,  such  that  the  number  of  test  cases  does  not become unmanageably 

large. The technique starts with identifying causes and effects of the system under testing. A cause 

is a distinct input condition, and an 



effect is a distinct output condition. Each condition forms a node in the  cause- effect graph. 

The conditions should be stated such that they can be set to either true or false. For example, 

an input condition can be "file is empty," which can be set  to  true  by  having  an  empty  

input  file,  and  false  by  a  nonempty  file.  After identifying the causes and effects, for each 

effect we identify the causes that can produce  that  effect  and  how  the  conditions  have  to  

be  combined  to  make  the effect true. Conditions are combined using the Boolean operators 

"and", "or", and 

"not", which are represented in the graph by Λ, V and zigzag line respectively. Then, for each 

effect, all combinations of the causes that the effect depends on which will make the effect 

true, are generated (the causes that the effect does not  depend  on  are  essentially  

"don't  care").  By  doing  this,  we  identify  the combinations  of  conditions  that make 

different  effects true. A  test  case  is  then generated for each combination of conditions, which 

make some effect true. 

Let  us  illustrate  this  technique  with  a  small  example.  Suppose  that  for  a  bank database 

there are two commands allowed: 

credit acct-number transaction_amount debit 

acct-number transaction_amount 

The requirements are that if the command is credit and the acct-number is valid, then the 

account is credited. If the command is debit, the acct-number is valid, and the 

transaction_amount is valid (less than the balance), then the account is debited. If the 

command is not valid, the account number is not valid, or the debit 



amount is not valid, a suitable message is generated. We can identify the following 

causes and effects from these requirements: 

Cause: 

 

c1. Command is credit c2. 

Command is debit 

c3. Account number is valid 

 

 

c4. Transaction_amt. is valid 

 

Effects: 

 

el. Print "invalid command" 

 

e2. Print "invalid account- 

number"  e3.  Print  "Debit  amount not 

valid" e4. Debit account 

e5. Credit account 

 

The  cause  effect  of  this  is  shown  in  following  Figure  9.3.4.  In  the  graph,  the cause-

effect  relationship  of  this  example  is  captured.  For  all  effects,  one  can easily 

determine the causes each effect depends on and the exact nature of the 

dependency. For example, according to this graph, the effect E5 depends on the causes c2, c3, 

and c4 in a manner such that the effect E5 is enabled when all c2, c3, and c4 are true. Similarly, 

the effect E2 is enabled if c3 is false. 

From this graph, a list of test cases can be generated. The basic strategy is to 

 

set an effect to I and then set the causes that enable this condition. The condition 

 

of causes forms the test case. A cause may be set to false, true, or don't care (in the case when the 

effect does not depend at all on the cause). To do this for all 



 
 

the effects, it is convenient to use a decision table (Table 9.3.1). This table lists the  

combinations  of  conditions  to  set  different  effects.  Each  combination  of conditions  

in  the  table  for  an  effect  is  a  test  case.  Together,  these  condition combinations 

check for various effects the software should display. For example, 

to test for the effect E3, both c2  and c4 have to be set. That is, to test the effect 

 

"Print debit amount not valid," the test case should be: Command is debit 

 

 

(setting: c2  to True), the account number is valid (setting c3  to False), and the transaction 

money is not proper (setting c4 to False). 
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Figure 9.3.4 The Cause Effect Graph 
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Table 9.3.1  Decision Table for the Cause-effect Graph 

 

Cause-effect  graphing,  beyond  generating  high-yield  test  cases,  also  aids  the 

understanding of the functionality of the system, because the tester must identify the distinct 

causes and effects. There are methods of reducing the number of test cases generated by 

proper traversing of the graph. Once the causes and effects are listed and their dependencies 

specified, much of the remaining work can also 

be automated. 

 

Black box and white box testing compared 

 

White box testing is concerned only with testing the software product; it cannot guarantee  

that  the  complete  specification  has  been  implemented.  Black  box testing is concerned 

only with testing the specification; it cannot guarantee that 

all  parts  of  the  implementation  have  been  tested.  Thus  black  box  testing  is testing  

against  the  specification  and  will  discover  faults  of  omission,  indicating that  part  of  the  

specification  has  not  been fulfilled. White  box testing is  testing against the implementation 

and will discover faults of commission, indicating that part of the implementation is faulty. In 

order to fully test a software product both black and white box testing are required. 

White box testing is much more expensive than black box testing. It requires the 



source code to be produced before the tests can be planned and is much more laborious in 

the determination of suitable input data and the determination if the software is or is not correct. 

The advice given is to start test planning with a black box test approach as soon as the 

specification is available. White box planning should commence as soon as all black box tests 

have been successfully passed, with the production of flow graphs and determination of paths. 

The paths should then be checked against the black box test plan and any additional required 

test runs determined and applied. 

The consequences of test failure at this stage may be very expensive. A failure of 

 

a white box test may result in a change which requires all black box testing to be repeated and the 

re-determination of the white box paths. The cheaper option is 

to regard the process of testing as one of quality assurance rather than quality control. The 

intention is that sufficient quality will be put into all previous design and  production  stages  so  

that  it  can  be  expected  that  testing  will  confirm  that there  are  very  few  faults  present,  

quality  assurance,  rather  than  testing  being relied upon to discover any faults in the 

software, quality control. A combination 

of black box and white box test considerations is still not a completely adequate test rationale; 

additional considerations are to be introduced. 



 


