

Software Crisis

Developments in software technology continue to be dynamic. New tools and techniques

are announced in quick succession. This has forced the software engineers and industry to

continuously look for new approaches to software design and development, and they are

becoming more and more critical in view of the increasing complexity of software

systems as well as the highly competitive nature of the industry. These rapid advances

appear to have created a situation of crisis within the industry. The following issued need

to be addressed to face the crisis:
• How to represent real-life entities of problems in system design?
• How to design system with open interfaces?
• How to ensure reusability and extensibility of modules?
• How to develop modules that are tolerant of any changes in future?
• How to improve software productivity and decrease software cost?
• How to improve the quality of software?
• How to manage time schedules?

Software Evaluation

Ernest Tello, A well known writer in the field of artificial intelligence, compared the

evolution of software technology to the growth of the tree. Like a tree, the software

evolution has had distinct phases “layers” of growth. These layers were building up one

by one over the last five decades as shown in fig. 1.1, with each layer representing and

improvement over the previous one. However, the analogy fails if we consider the life

of these layers. In software system each of the layers continues to be functional,

whereas in the case of trees, only the uppermost layer is functional

1, 0

Machine Language

Assembly Language

Alan Kay, one of the promoters of the object-oriented paradigm and the principal

designer of Smalltalk, has said: “As complexity increases, architecture dominates the

basic materials”. To build today‟s complex software it is just not enough to put together a

sequence of programming statements and sets of procedures and modules; we need to

incorporate sound construction techniques and program structures that are easy to

comprehend implement and modify.

With the advent of languages such as c, structured programming became very popular

and was the main technique of the 1980‟s. Structured programming was a powerful tool

that enabled programmers to write moderately complex programs fairly easily. However,

as the programs grew larger, even the structured approach failed to show the desired

result in terms of bug-free, easy-to- maintain, and reusable programs.

Object Oriented Programming (OOP) is an approach to program organization and

development that attempts to eliminate some of the pitfalls of conventional programming

methods by incorporating the best of structured programming features with several

powerful new concepts. It is a new way of organizing and developing programs and has

nothing to do with any particular language. However, not all languages are suitable to

implement the OOP concepts easily.

Procedure-Oriented Programming

In the procedure oriented approach, the problem is viewed as the sequence of things to

be done such as reading, calculating and printing such as cobol, fortran and c. The

primary focus is on functions. A typical structure for procedural programming is shown

in fig.1.2. The technique of hierarchical decomposition has been used to specify the tasks

to be completed for solving a problem.

Main Program

Function-1 Function-2 Function-3

Function-4

Function-5

Function-6 Function-7 Function-8

Fig. 1.2 Typical structure of procedural oriented programs

Procedure oriented programming basically consists of writing a list of instructions for the

computer to follow, and organizing these instructions into groups known as functions. We

normally use flowcharts to organize these actions and represent the flow of control from

one action to another.

In a multi- function program, many important data items are placed as global so that

they may be accessed by all the functions. Each function may have its own local data.

Global data are more vulnerable to an inadvertent change by a function. In a large

program it is very difficult to identify what data is used by which function. In case we

need to revise an external data structure, we also need to revise all functions that access

the data. This provides an opportunity for bugs to creep in.

Another serious drawback with the procedural approach is that we do not model real

world problems very well. This is because functions are action-oriented and do not really

corresponding to the element of the problem.

Some Characteristics exhibited by procedure-oriented programming are:

• Emphasis is on doing things (algorithms).
• Large programs are divided into smaller programs known as functions.
• Most of the functions share global data.
• Data move openly around the system from function to function.
• Functions transform data from one form to another.
• Employs top-down approach in program design.

bject Oriented Paradigm

The major motivating factor in the invention of object-oriented approach is to remove

some of the flaws encountered in the procedural approach. OOP treats data as a critical

element in the program development and does not allow it to flow freely around the

system. It ties data more closely to the function that operate on it, and protects it from

accidental modification from outside function. OOP allows decomposition of a problem

into a number of entities called objects and then builds data and function around these

objects. The organization of data and function in object-oriented programs is shown in

fig.1.3. The data of an object can be accessed only by the function associated with that

object. However, function of one object can access the function of other objects.
Organization of data and function in OOP

 Object A Object B

 DATA
Communication

 DATA

 FUNCTION FUNCTION

Object

 DATA

 FUNCTION

Some of the features of object oriented programming are:

• Emphasis is on data rather than procedure.
• Programs are divided into what are known as objects.
• Data structures are designed such that they characterize the objects.
• Functions that operate on the data of an object are ties together in the data

structure.

• Data is hidden and cannot be accessed by external function.
• Objects may communicate with each other through function.
• New data and functions can be easily added whenever necessary.
• Follows bottom up approach in program design.

Object-oriented programming is the most recent concept among programming

paradigms and still means different things to different people.

Basic Concepts of Object Oriented Programming

It is necessary to understand some of the concepts used extensively in object-oriented

programming. These include:
• Objects
• Classes
• Data abstraction and encapsulation
• Inheritance
• Polymorphism
• Dynamic binding
• Message passing

We shall discuss these concepts in some detail in this section.

Objects

Objects are the basic run time entities in an object- oriented system. They may represent a

person, a place, a bank account, a table of data or any item that the program has to

handle. They may also represent user-defined data such as vectors, time and lists.

Programming problem is analyzed in term of objects and the nature of communication

between them. Program objects should be chosen such that they match closely with the

real-world objects. Objects take up space in the memory and have an associated address

like a record in Pascal, or a structure in c.

When a program is executed, the objects interact by sending messages to one another.

Foe example, if “customer” and “account” are to object in a program, then the customer

object may send a message to the count object requesting for the bank balance. Each

object contain data, and code to manipulate data. Objects can interact without having to

know details of each other‟s data or code. It is a sufficient to know the type of message

accepted, and the type of response returned by the objects. Although different author

represent them differently fig 1.5 shows two notations that are popularly used in object-

oriented analysis and design.

OBJECTS: STUDENT

DATA
Name

Date-of-birth

Marks

FUNCTIONS
Total

Average

Display
………

Fig. 1.5 representing an object

Classes
We just mentioned that objects contain data, and code to manipulate that data. The entire

set of data and code of an object can be made a user -defined data type with the help of

class. In fact, objects are variables of the type class. Once a class has been defined, we

can create any number of objects belonging to that class. Each object is associated with

the data of type class with which they are created. A class is thus a collection of objects

similar types. For examples, Mango, Apple and orange members of class fruit. Classes

are user-defined that types and behave like the built-in types of a programming language.

The syntax used to create an object is not different then the syntax used to create an

integer object in C. If fruit has been defines as a class, then the statement

Fruit Mango;
Will create an object mango belonging to the class fruit.

 Data Abstraction and Encapsulation

The wrapping up of data and function into a single unit (called class) is known as

encapsulation. Data and encapsulation is the most striking feature of a class. The data is

not accessible to the outside world, and only those functions which are wrapped in the

class can access it. These functions provide the interface between the object‟s data and

the program. This insulation of the data from direct access by the program is called data

hiding or information hiding.

Abstraction refers to the act of representing essential features without including the

background details or explanation. Classes use the concept of abstraction and are defined

as a list of abstract attributes such as size, wait, and cost, and function operate on these

attributes. They encapsulate all the essential properties of the object that are to be created.

The attributes are some time called data members because they hold information. The

functions that operate on these data are sometimes called methods or member function.

 Inheritance

Inheritance is the process by which objects of one class acquired the properties of objects

of another classes. It supports the concept of hierarchical classification. For example, the

bird, „robin‟ is a part of class „flying bird‟ which is again a part of the class „bird‟. The

principal behind this sort of division is that each derived class shares common

characteristics with the class from which it is derived as illustrated in fig 1.6.
In OOP, the concept of inheritance provides the idea of reusability. This means that we

can add additional features to an existing class without modifying it. This is possible by

deriving a new class from the existing one. The new class will have the combined feature

of both the classes. The real appeal and power of the inheritance mechanism is that it

Fig. 1.6 Property inheritances

BRD

Attributes

Features

Lay Eggs

Flying Bird Non Flying Bird

Attributes Attributes

………… ………..

………... ………..

Robin Swallow Penguin Kiwi

Attributes Attributes Attributes Attributes

………… ………… ………… …………

………... ………... ………... ………...

Allows the programmer to reuse a class i.e almost, but not exactly, what he wants, and to

tailor the class in such a way that it does not introduced any undesirable side-effects into

the rest of classes.

Polymorphism

Polymorphism is another important OOP concept. Polymorphism, a Greek term, means

the ability to take more than on form. An operation may exhibit different behavior is

different instances. The behavior depends upon the types of data used in the operation.

For example, consider the operation of addition. For two numbers, the operation will

generate a sum. If the operands are strings, then the operation would produce a third

string by concatenation. The process of making an operator to exhibit different behaviors

in different instances is known as operator overloading.

Fig. 1.7 illustrates that a single function name can be used to handle different number

and different types of argument. This is something similar to a particular word having

several different meanings depending upon the context. Using a single function name to

perform different type of task is known as function overloading.

Shape

Draw

Circle Object Box object Triangle Object

Draw (Circle) Draw (box) Draw (triangle)

Fig. 1.7 Polymorphism

Polymorphism plays an important role in allowing objects having different internal

structures to share the same external interface. This means that a general class of

operations may be accessed in the same manner even though specific action associated

with each operation may differ. Polymorphism is extensively used in implementing

inheritance.

 Dynamic Binding

Binding refers to the linking of a procedure call to the code to be executed in response to

the call. Dynamic binding means that the code associated with a given procedure call is

not known until the time of the call at run time. It is associated with polymorphism and

inheritance. A function call associated with a polymorphic reference depends on the

dynamic type of that reference.

Consider the procedure “draw” in fig. 1.7. by inheritance, every object will have this

procedure. Its algorithm is, however, unique to each object and so the draw procedure

will be redefined in each class that defines the object. At run-time, the code matching the

object under current reference will be called.

Message Passing

An object-oriented program consists of a set of objects that communicate with each other.

The process of programming in an object-oriented language, involves the following basic

steps:
1. Creating classes that define object and their behavior,

2. Creating objects from class definitions, and

3. Establishing communication among objects.

Objects communicate with one another by sending and receiving information much the

same way as people pass messages to one another. The concept of message passing

makes it easier to talk about building systems that directly model or simulate their real-

world counterparts.

A Message for an object is a request for execution of a procedure, and therefore will

invoke a function (procedure) in the receiving object that generates the desired results.

Message passing involves specifying the name of object, the name of the function

(message) and the information to be sent. Example:

Employee. Salary (name);

Object
Information

Message

Object has a life cycle. They can be created and destroyed. Communication with an

object is feasible as long as it is alive.

Benefits of OOP

OOP offers several benefits to both the program designer and the user. Object-

Orientation contributes to the solution of many problems associated with the

development and quality of software products. The new technology promises greater

programmer productivity, better quality of software and lesser maintenance cost. The

principal advantages are:

• Through inheritance, we can eliminate redundant code extend the use of existing
• Classes.
• We can build programs from the standard working modules that communicate

with one another, rather than having to start writing the code from scratch. This

leads to saving of development time and higher productivity.
• The principle of data hiding helps the programmer to build secure program that

can not be invaded by code in other parts of a programs.
• It is possible to have multiple instances of an object to co-exist without any

interference.

• It is possible to map object in the problem domain to those in the program.
• It is easy to partition the work in a project based on objects.
• The data-centered design approach enables us to capture more detail of a model

can implemental form.
• Object-oriented system can be easily upgraded from small to large system.
• Message passing techniques for communication between objects makes to

interface descriptions with external systems much simpler.

• Software complexity can be easily managed.

Object Oriented Language

Object-oriented programming is not the right of any particular languages. Like structured

programming, OOP concepts can be implemented using languages such as C and Pascal.

However, programming becomes clumsy and may generate confusion when the programs

grow large. A language that is specially id designed to support the OOP concepts makes

it easier to implement them.

The languages should support several of the OOP concepts to claim that they are

object-oriented. Depending upon the features they support, they can be classified into the

following two categories:

1. Object-based programming languages, and
2. Object-oriented programming languages.

Object-based programming is the style of programming that primarily supports

encapsulation and object identity. Major feature that are required for object based

programming are:
• Data encapsulation
• Data hiding and access mechanisms
• Automatic initialization and clear-up of objects
• Operator overloading

Application of OOP

• Real-time system
• Simulation and modeling
• Object-oriented data bases
• Hypertext, Hypermedia, and expertext
• AI and expert systems
• Neural networks and parallel programming
• Decision support and office automation systems
• CIM/CAM/CAD systems

Introduction of C++

C+ + is a superset of C. Almost all c programs are also C++ programs. However, there

are a few minor differences that will prevent a c program to run under C++ complier. We

shall see these differences later as and when they are encountered.

The most important facilities that C++ adds on to C care classes, inheritance, function

overloading and operator overloading. These features enable creating of abstract data

types, inherit properties from existing data types and support polymorphism, thereby

making C++ a truly object-oriented language.

Application of C++

• Since C++ allow us to create hierarchy related objects, we can build special

object-oriented libraries which can be used later by many programmers.
• While C++ is able to map the real-world problem properly, the C part of C++

gives the language the ability to get closed to the machine-level details.
• C++ programs are easily maintainable and expandable. When a new feature needs

to be implemented, it is very easy to add to the existing structure of an object.
• It is expected that C++ will replace C as a general-purpose language in the near

future.

Simple C++ Program
Let us begin with a simple example of a C++ program that prints a string on the

screen.

Printing A String
#include<iostream>

Using namespace std;

int main()

{

cout<<” c++ is better than c \n”;

return 0;

}

This simple program demonstrates several C++ features.

 INTRODUCTION

Functions are the building blocks of C++ programs where all the program activity

occurs. Function is a collection of declarations and statements.

Need for a Function

Monolethic program (a large single list of instructions) becomes difficult to

understand. For this reason functions are used. A function has a clearly defined objective

(purpose) and a clearly defined interface with other functions in the program. Reduction in

program size is another reason for using functions. The functions code is stored in only one

place in memory, even though it may be executed as many times as a user needs.

The following program illustrates the use of a function :

//to display general message using function

#include<iostream.h>

include<conio.h>

void main()

{

void disp(); //function prototype

clrscr(); //clears the screen

disp(); //function call

getch(); //freeze the monitor

}

//function definition

void disp()

{

cout<<”Welcome to the GJU of S&T\n”;

cout<<”Programming is nothing but logic implementation”;

}

PROGRAM 4.1

In this Unit, we will also discuss Class, as important Data Structure of C++. A
Class is the backbone of Object-Oriented Computing. It is an abstract data type.

We can declare and define data as well as functions in a class. An object is a
replica of the class to the exception that it has its own name. A class is a data
type and an object is a variable of that type. Classes and objects are the most
important features of C++. The class implements OOP features and ties them together.

 FUNCTION DEFINITION AND DECLARATION

In C++, a function must be defined prior to it’s use in the program. The function definition

contains the code for the function. The function definition for display_message () in program

6.1 is given below the main () function. The general syntax of a function definition in C++ is

shown below:

Type name_of_the_function (argument list)

{

//body of the function

}

Here, the type specifies the type of the value to be returned by the function. It may

be any valid C++ data type. When no type is given, then the compiler returns an integer value

from the function.

Name_of_the_function is a valid C++ identifier (no reserved word allowed) defined

by the user and it can be used by other functions for calling this function.

Argument list is a comma separated list of variables of a function through which the

function may receive data or send data when called from other function. When no parameters,

the argument list is empty as you have already seen in program 6.1. The following

function illustrates the concept of function definition :

//function definition add()

void add()

{

int a,b,sum;

cout<<”Enter two integers”<<endl;

cin>>a>>b;

sum=a+b;

cout<<”\nThe sum of two numbers is “<<sum<<endl;

}

The above function add () can also be coded with the help of arguments of

parameters as shown below:

//function definition add()

void add(int a, int b) //variable names are must in definition

{

int sum;

sum=a+b;

cout<<”\nThe sum of two numbers is “<<sum<<endl;

}

ARGUMENTS TO A FUNCTION

Arguments(s) of a function is (are) the data that the function receives when

called/invoked from another function.

 PASSING ARGUMENTS TO A FUNCTION

It is not always necessary for a function to have arguments or parameters. The

functions add () and divide () in program 6.3 did not contain any arguments. The

following example illustrates the concept of passing arguments to function SUMFUN ():

// demonstration of passing arguments to a function

#include<iostream.h>

void main ()

{

float x,result; //local variables

int N;

formal parameters

 Semicolon here

float SUMFUN(float x, int N); //function declaration

return type

………………………….

………………………….

result = SUMFUN(X,N); //function declaration

}

//function SUMFUN() definition

No semicolon here

float SUMFUN(float x,int N) //function declaration

{

………………………….

…………………………. Body of the function

………………………….

}

No semicolon here

DEFAULT ARGUMENTS

C++ allows a function to assign a parameter the default value in case

no argument for that parameter is specified in the function call. For example.

// demonstrate default arguments function

#include<iostream.h>

int calc(int U)

{

If (U % 2 = = 0)

return U+10;

Else

return U+2

}

Void pattern (char M, int B=2)

{

for (int CNT=0;CNT<B; CNT++)

cout<calc(CNT) <<M;

cout<<endl;

}

Void main ()

{

Pattern(„*‟);

Pattern („#‟,4)‟

Pattern (;@;,3);

}

 CONSTANT ARGUMENTS

A C++ function may have constant arguments(s). These arguments(s) is/are

treated as constant(s). These values cannot be modified by the function.

For making the arguments(s) constant to a function, we should use the keyword const

as given below in the function prototype :

Void max(const float x, const float y, const float z);

Here, the qualifier const informs the compiler that the arguments(s) having

const should not be modified by the function max (). These are quite useful when call by

reference method is used for passing arguments.

CALLING FUNCTIONS

In C++ programs, functions with arguments can be invoked by :

(a) Value

(b) Reference

Call by Value: - In this method the values of the actual parameters (appearing in the

function call) are copied into the formal parameters (appearing in the function definition), i.e., the

function creates its own copy of argument values and operates on them. The following program

illustrates this concept :

//calculation of compound interest using a function

#include<iostream.h>

#include<conio.h>

#include<math.h> //for pow()function

Void main()

{

Float principal, rate, time; //local variables

Void calculate (float, float, float); //function

prototype clrscr();

Cout<<”\nEnter the following values:\n”;

Cout<<”\nPrincipal:”;

Cin>>principal;

Cout<<”\nRate of interest:”;

Cin>>rate;

Cout<<”\nTime period (in yeaers)

:”; Cin>>time;

Calculate (principal, rate, time); //function call

Getch ();

}

//function definition calculate()

Void calculate (float p, float r, float t)

{

Float interest; //local variable Interest =

p* (pow((1+r/100.0),t))-p; Cout<<”\nCompound

interest is : “<<interest; }

Call by Reference: - A reference provides an alias – an alternate name – for the

variable, i.e., the same variable’s value can be used by two different names : the original name

and the alias name.

In call by reference method, a reference to the actual arguments(s) in the calling program is

passed (only variables). So the called function does not create its own copy of original value(s)

but works with the original value(s) with different name. Any change in the original data in the

called function gets reflected back to the calling function.

It is useful when you want to change the original variables in the calling function by the called

function.

//Swapping of two numbers using function call by reference

#include<iostream.h>

#include<conio.h>

void main()

{

clrscr();

int num1,num2;

void swap (int &, int &); //function prototype

cin>>num1>>num2;

cout<<”\nBefore swapping:\nNum1: “<<num1;

cout<<endl<<”num2: “<<num2;

swap(num1,num2); //function call

cout<<”\n\nAfter swapping : \Num1: “<<num1;

cout<<endl<<”num2: “<<num2; getch();

}

//function fefinition swap()

void swap (int & a, int & b)

{

Int temp=a;

a=b;

b=temp;

}

 INLINE FUNCTIONS

These are the functions designed to speed up program execution. An inline function is
expanded (i.e. the function code is replaced when a call to the inline function is made) in the line

where it is invoked. You are familiar with the fact that in case of normal functions, the compiler

have to jump to another location for the execution of the function and then the control is
returned back to the instruction immediately after the function call statement. So execution time

taken is more in case of normal functions. There is a memory penalty in the case of an inline
function.

The system of inline function is as follows :

inline function_header

{

body of the function

}

For example,

//function definition min()

inline void min (int x, int y)

cout<< (x < Y? x : y);

}

Void main()

{

int num1, num2;

cout<<”\Enter the two intergers\n”;

cin>>num1>>num2;

min (num1,num2; //function code inserted here

}

An inline function definition must be defined before being invoked as shown in the above

example. Here min () being inline will not be called during execution, but its code would be

inserted into main () as shown and then it would be compiled.

If the size of the inline function is large then heavy memory pentaly makes it not

so useful and in that case normal function use is more useful.

The inlining does not work for the following situations :

1. For functions returning values and having a loop or a switch or a goto

statement.

2. For functions that do not return value and having a return statement.

3. For functions having static variable(s).

4. If the inline functions are recursive (i.e. a function defined in terms of itself).

The benefits of inline functions are as follows :

1. Better than a macro.

2. Function call overheads are eliminated.

3. Program becomes more readable.

4. Program executes more efficiently.

 SCOPE RULES OF FUNCTIONS AND VARIABLES

The scope of an identifier is that part of the C++ program in which it is accessible.

Generally, users understand that the name of an identifier must be unique. It does not mean

that a name can’t be reused. We can reuse the name in a program provided that there is some

scope by which it can be distinguished between different cases or instances.

In C++ there are four kinds of scope as given below :

1. Local Scope

2. Function Scope

3. File Scope

4. Class Scope

Local Scope:- A block in C++ is enclosed by a pair of curly braces i.e., ‘{‘ and ‘}’. The

variables declared within the body of the block are called local variables and can be used only

within the block. These come into existence when the control enters the block and get destroyed

when the control leaves the closing brace. You should note the variable(s) is/are available to all

the enclosed blocks within a block.

For example,

int x=100;

{ cout<<x<<endl;

Int x=200;

{

cout<<x<<endl;

int x=300;

{

cout<<x<<endl;

}

}

cout<<x<<endl;

}

Function Scope : It pertains to the labels declared in a function i.e., a label can be used

inside the function in which it is declared. So we can use the same name labels in different

functions.

For example,

//function definition add1()

void add1(int x,int y,int z)

{

int sum = 0;

sum = x+y+z;

cout<<sum;

}

//function definition add2()

coid add2(float x,float y,float z)

{

Float sum = 0.0;

sum = x+y+z;

cout<<sum;

}

Here the labels x, y, z and sum in two different functions add1 () and add2 () are

declared and used locally.

File Scope : If the declaration of an identifier appears outside all functions, it is available to all

the functions in the program and its scope becomes file scope. For Example,

int x;

void square (int n)

{

cout<<n*n;

}

void main ()

{

int num;

…………...........

cout<<x<<endl;

cin>>num;

squaer(num);

…………...........

}

Here the declarations of variable x and function square () are outside all the

functions so these can be accessed from any place inside the program. Such

variables/functions are called global.

Class Scope : In C++, every class maintains its won associated scope. The class members are

said to have local scope within the class. If the name of a variable is reused by a class member,

which already has a file scope, then the variable will be hidden inside the class. Member

functions also have class scope.

DEFINITION AND DECLARATION OF A CLASS

A class in C++ combines related data and functions together. It makes a data

type which is used for creating objects of this type.

Classes represent real world entities that have both data type

properties (characteristics) and associated operations (behavior).

The syntax of a class definition is shown below :

Class name_of _class

: variable declaration; // data member

Function declaration; // Member Function (Method)

protected: Variable declaration;

Function declaration;

public : variable declaration;

Function declaration;

};

{

private

Here, the keyword class specifies that we are using a new data type and is followed by the class

name.

The body of the class has two keywords namely :

(i) private (ii) public

In C++, the keywords private and public are called access specifiers. The data

hiding concept in C++ is achieved by using the keyword private. Private data and functions

can only be accessed from within the class itself. Public data and functions are accessible

outside the class also. This is shown below :

Class

Private

data members

and

member functions

Public

data members

and

member functions

Can only be accessed

from within the class

Can only be accessed from

outside the class

Data hiding not mean the security technique used for protecting computer databases.

The security measure is used to protect unauthorized users from performing any operation

(read/write or modify) on the data.

The data declared under Private section are hidden and safe from

accidental manipulation. Though the user can use the private data but not by accident.

The functions that operate on the data are generally public so that they can be

accessed from outside the class but this is not a rule that we must follow.

 MEMBER FUNCTION DEFINITION

The class specification can be done in two part :

(i) Class definition. It describes both data members and member functions.

(ii) Class method definitions. It describes how certain class member functions

are coded.

We have already seen the class definition syntax as well as an example.

In C++, the member functions can be coded in two ways :

(a) Inside class definition

(b) Outside class definition using scope resolution operator (::)

The code of the function is same in both the cases, but the function header is

different as explained below :

 Inside Class Definition:

When a member function is defined inside a class, we do not require to place a

membership label along with the function name. We use only small functions inside the class

definition and such functions are known as inline functions.

In case of inline function the compiler inserts the code of the body of the function at

the place where it is invoked (called) and in doing so the program execution is faster but

memory penalty is there.

 Outside Class Definition Using Scope Resolution Operator (::) :

In this case the function’s full name (qualified_name) is written as shown:

Name_of_the_class :: function_name

The syntax for a member function definition outside the class definition is :

return_type name_of_the_class::function_name (argument list)

{

body of function

}

Here the operator::known as scope resolution operator helps in defining the member

function outside the class. Earlier the scope resolution operator(::)was ised om situations

where a global variable exists with the same name as a local variable and it identifies the

global variable.

DECLARATION OF OBJECTS AS INSTANCES OF A CLASS

The objects of a class are declared after the class definition. One must remember

that a class definition does not define any objects of its type, but it defines the properties of

a class. For utilizing the defined class, we need variables of the class type. For example,

Largest ob1,ob2; //object declaration

will create two objects ob1 and ob2 of largest class type. As mentioned earlier, in

C++ the variables of a class are known as objects. These are declared like a simple variable

i.e., like fundamental data types.

In C++, all the member functions of a class are created and stored when the class is

defined and this memory space can be accessed by all the objects related to that class.

Memory space is allocated separately to each object for their data members. Member

variables store different values for different objects of a class.

The figure shows this concept

Common for all objects

 Member Member Member function3

 Memory allocated when

 member functions are defined

 Object 1 Object 2

 data member data member 1

data member data member 2

Memory allocated when

objects declared

A class, its member functions and objects in memory.

ACCESSING MEMBERS FROM OBJECT(S)

After defining a class and creating a class variable i.e., object we can access the data

members and member functions of the class. Because the data members and member

functions are parts of the class, we must access these using the variables we created. For

functions are parts of the class, we must access these using the variable we created. For

Example,

Class student

{

private:

char reg_no[10];

` char name[30];

int age;

char address[25];

public :

void init_data()

{

- - - - - //body of function

- - - - -

}

void display_data()

}

};

student ob; //class variable (object) created

- - - - -

- - - - -

Ob.init_data(); //Access the member function

ob.display_data(); //Access the member

function - - - - -

- - - - -

Here, the data members can be accessed in the member functions as these have

private scope, and the member functions can be accessed outside the class i.e., before or

after the main() function.

STATIC CLASS MEMBERS

Data members and member functions of a class in C++, may be qualified as static.

We can have static data members and static member function in a class.

4.11.1 Static Data Member: It is generally used to store value common to

the whole class. The static data member differs from an ordinary data member in the following

ways :

(i) Only a single copy of the static data member is used by all the objects.

(ii) It can be used within the class but its lifetime is the whole

program. For making a data member static, we require :

(a) Declare it within the class.

(b) Define it outside the class.

For example

Class student

{

Static int count; //declaration within class

};

The static data member is defined outside the class as :

int student :: count; //definition outside class

The definition outside the class is a must.

We can also initialize the static data member at the time of its definition as:

int student :: count = 0;

If we define three objects as : sudent obj1, obj2, obj3;

4.11.2 Static Member Function: A static member function can access only

the static members of a class. We can do so by putting the keyword static before the name

of the function while declaring it for example,

Class student

{

Static int count;

public :

static void showcount (void) //static member function

{

Cout<<”count=”<<count<<”\n”;

}

};

int student ::count=0;

Here we have put the keyword static before the name of the function shwocount ().

In C++, a static member function fifers from the other member functions in the following
ways:

(i) Only static members (functions or variables) of the same class can

be accessed by a static member function.
(ii) It is called by using the name of the class rather than an object as given

below:

Name_of_the_class :: function_name

For example,

student::showcount();

 FRIEND CLASSES

In C++ , a class can be made a friend to another class. For example,

class TWO; // forward declaration of the class TWO

class ONE

{

………………………

…………….

public:

……………..

……………..

friend class TWO; // class TWO declared as friend of class ONE

};

Now from class TWO , all the member of class ONE can be accessed.

INTRODUCTION

A constructor (having the same name as that of the class) is a member function which

is automatically used to initialize the objects of the class type with legal initial values.

Destructors are the functions that are complimentary to constructors. These are used to de-

initialize objects when they are destroyed. A destructor is called when an object of the class

goes out of scope, or when the memory space used by it is de allocated with the help of

delete operator.

Operator overloading is one of the most exciting features of C++. It is helpful in

enhancement of the power of extensibility of C++ language. Operator overloading redefines the

C++ language. User defined data types are made to behave like built-in data types in C++.

Operators +, *. <=, += etc. can be given additional meanings when applied on user defined

data types using operator overloading. The mechanism of providing such an additional

meaning to an operator is known as operator overloading in C++.

Declaration and Definition of a Constructor:-

It is defined like other member functions of the class, i.e., either inside the class

definition or outside the class definition.

For example, the following program illustrates the concept of a constructor :

//To demonstrate a constructor

#include <iostram.h>

#include <conio.h>

Class rectangle

{

private :

float length, breadth;

public:

rectangle ()//constructor definition

{

//displayed whenever an object is created

cout<<”I am in the constructor”; length-

10.0;

breadth=20.5;

}

float area()

{

return (length*breadth);

}

};

void main()

{

clrscr();

rectangle rect; //object declared

cout<<”\nThe area of the rectangle with default parameters

is:”<<rect.area()<<”sq.units\n”;

getch();

}

Type Of Constructor

There are different type of constructors in C++.

 Overloaded Constructors

Besides performing the role of member data initialization, constructors are no

different from other functions. This included overloading also. In fact, it is very common to find

overloaded constructors. For example, consider the following program with overloaded

constructors for the figure class :

//Illustration of overloaded constructors

//construct a class for storage of dimensions of circles.

//triangle and rectangle and calculate their area

#include<iostream.h>

#include<conio.h>

#include<math.h>

#include<string.h> //for strcpy()

Class figure

{

Private:

Float radius, side1,side2,side3; //data

members Char shape[10];

Public:

figure(float r) //constructor for circle

{

radius=r;

strcpy (shape, “circle”);

}

figure (float s1,float s2) //constructor for rectangle

strcpy

{

Side1=s1;

Side2=s2;

Side3=radius=0.0; //has no significance in

rectangle strcpy(shape,”rectangle”);

}

Figure (float s1, floats2, float s3) //constructor for triangle

{

side1=s1;

side2=s2;

side3=s3;

radius=0.0;

strcpy(shape,”triangle”);

}

void area() //calculate area

{

float ar,s;

if(radius==0.0)

{

if (side3==0.0)

ar=side1*side2;

else

ar=3.14*radius*radius;

cout<<”\n\nArea of the “<<shape<<”is :”<<ar<<”sq.units\n”;

}

};

Void main()

{

Clrscr();

Figure circle(10.0); //objrct initialized using constructor

Figure rectangle(15.0,20.6);//objrct initialized using onstructor

Figure Triangle(3.0, 4.0, 5.0); //objrct initialized using constructor

Rectangle.area();

Triangle.area();

Getch();//freeze the monitror

}

Copy Constructor

It is of the form classname (classname &) and used for the initialization of an

object form another object of same type. For example,

Class fun

{

Float x,y;

Public:

Fun (floata,float b)//constructor

{

x = a;

y = b;

}

Fun (fun &f) //copy constructor

{cout<<”\ncopy constructor at work\n”;

X = f.x;

Y = f.y;

}

Void display (void)

{

{

Cout<<””<<y<<end1;

}

};

Here we have two constructors, one copy constructor for copying data value of a fun

object to another and other one a parameterized constructor for assignment of initial values

given.

 Dynamic Initialization of Objects

In C++, the class objects can be initialized at run time (dynamically). We have

the flexibility of providing initial values at execution time. The following program illustrates this

concept:

//Illustration of dynamic initialization of objects

#include <iostream.h>

#include <conio.h>

Class employee

{

Int empl_no;

Float salary;

Public:

Employee() //default constructor

{}

Employee(int empno,float s)//constructor with

arguments {

Empl_no=empno;

Salary=s;

}

Employee (employee &emp)//copy constructor

{

Cout<<”\ncopy constructor working\n”;

Empl_no=emp.empl_no;

Salary=emp.salary;

}

Void display (void)

{

Cout<<”\nEmp.No:”<<empl_no<<”salary:”<<salary<<end1;

}

};

Void main()

{

int eno;

float sal;

clrscr();

cout<<”Enter the employee number and

salary\n”; cin>>eno>>sal;

employee obj1(eno,sal);//dynamic initialization of

object cout<<”\nEnter the employee number and salary\n”;

cin>eno>>sal;

employee obj2(eno,sal); //dynamic initialization of object

obj1.display(); //function called

employee obj3=obj2; //copy constructor called

obj3.display();

getch();

}

 Constructors and Primitive Types

In C++, like derived type, i.e. class, primitive types (fundamental types) also have

their constructors. Default constructor is used when no values are given but when we given

initial values, the initialization take place for newly created instance. For example,

float x,y; //default constructor used

int a(10), b(20); //a,b initialized with values 10 and 20

float i(2.5), j(7.8); //I,j, initialized with valurs 2.5 and 7.8

Constructor with Default Arguments

In C++, we can define constructor s with default arguments. For example,

The following code segment shows a constructor with default arguments:

Class add

{

Private:

Int num1, num2,num3;

Public:

Add(int=0,int=0); //Default argument constructor

//to reduce the number of constructors Void

enter (int,int);

Void sum();

Void display();

};

//Default constructor definition

add::add(int n1, int n2)

{

num1=n1;

num2=n2;

num3=n0;

}

Void add ::sum()

{

Num3=num1+num2;

}

Void add::display ()

{

Cout<<”\nThe sum of two numbers is “<<num3<<end1;

}

Now using the above code objects of type add can be created with no initial values,

one initial values or two initial values. For Example,

Add obj1, obj2(5), obj3(10,20);

Here, obj1 will have values of data members num1=0, num2=0

and num3=0

Obj2 will have values of data members num1=5, num2=0 and num3=0 Obj3

will have values of data members num1=10, num2=20 and num3=0

If two constructors for the above class add are

Add::add() {} //default constructor

and add::add(int=0);//default argument constructor

Then the default argument constructor can be invoked with either two or one or

no parameter(s).

Without argument, it is treated as a default constructor-using these two forms together

causes ambiguity. For example,

The declaration add obj;

is ambiguous i.e., which one constructor to invoke i.e.,

add :: add()

or add :: add(int=0,int=0)

so be careful in such cases and avoid such mistakes.

Declaration and Definition of a Destructor

The syntax for declaring a destructor is :

-name_of_the_class()

{

}

So the name of the class and destructor is same but it is prefixed with a ~

(tilde). It does not take any parameter nor does it return any value. Overloading a

destructor is not possible and can be explicitly invoked. In other words, a class can have only

one destructor. A destructor can be defined outside the class. The following program illustrates

this concept :

//Illustration of the working of Destructor function

#include<iostream.h>

#include<conio.h>

class add

{

private :

int num1,num2,num3;

public :

add(int=0, int=0); //default argument constructor

//to reduce the number of constructors

void sum();

void display();

~ add(void); //Destructor

};

//Destructor definition ~add()

Add:: ~add(void) //destructor called automatically at end of program

{

Num1=num2=num3=0;

Cout<<”\nAfter the final execution, me, the object has entered in

the”

<<”\ndestructor to destroy

myself\n”; }

//Constructor definition add()

Add::add(int n1,int n2)

{

num1=n1;

num2=n2;

num3=0;

}

//function definition sum ()

Void add::sum()

{

num3=num1+num2;

}

//function definition display ()

Void add::display ()

{

Cout<<”\nThe sum of two numbers is “<<num3<<end1;

}

void main()

{

Add obj1,obj2(5),obj3(10,20): //objects created and initialized

clrscr();

Obj1.sum(); //function call

Obj2.sum();

Obj3.sum();

cout<<”\nUsing obj1 \n”;

obj1.display(); //function call

cout<<”\nUsing obj2 \n”;

obj2.display();

cout<<”\nUsing obj3 \n”;

obj3.display();

}

 DECLARATION AND DEFINITION OF A OVERLOADING

For defining an additional task to an operator, we must mention what is means in relation to

the class to which it (the operator) is applied. The operator function helps us in doing so.

The Syntax of declaration of an Operator function is as follows:

Operator Operator_name

For example, suppose that we want to declare an Operator function for „=‟. We

can do it as follows:

operator =

A Binary Operator can be defined either a member function taking one argument or a
global function taking one arguments. For a Binary Operator X, a X b can be interpreted as either

an operator X (b) or operator X (a, b).

For a Prefix unary operator Y, Ya can be interpreted as either a.operator Y () or Operator Y (a).

For a Postfix unary operator Z, aZ can be interpreted as either a.operator Z(int) or Operator

(Z(a),int).

The operator functions namely operator=, operator [], operator () and operator? must be non-

static member functions. Due to this, their first operands will be lvalues.

An operator function should be either a member or take at least one class object argument. The

operators new and delete need not follow the rule. Also, an operator function, which needs to

accept a basic type as its first argument, cannot be a member function. Some examples of

declarations of operator functions are given below:

class P
{

P operator ++ (int);//Postfix increment

P operator ++ (); //Prefix increment

P operator || (P); //Binary OR

}

Some examples of Global Operator Functions are given below:

P operator – (P); // Prefix Unary minus
P operator – (P, P); // Binary “minus”

P operator - - (P &, int); // Postfix Decrement

We can declare these Global Operator Functions as being friends of

any other class.
Examples of operator overloading:

Operator overloading using friend.

Class time
{

int r;

int i;

public:

friend time operator + (const time &x, const time &y);

// operator overloading using

friend time () { r = i = 0;}

time (int x, int y) {r = x; i = y;}

};

time operator + (const time &x, const time &y)

{

time z;

z.r = x.r +y.r;
z.i = x.i + y.i;

return z;
}

main ()
{

time x,y,z;

x = time (5,6);

y = time (7,8);

z = time (9, 10);

z = x+y; // addition using friend function +

}

Operator overloading using member function:

Class abc
{

char * str;

int len ; // Present length of the string

int max_length; // (maximum space allocated to string)

public:
abc (); // black string of length 0 of maximum allowed length of size 10.
abc (const abc &s) ;// copy constructor

~ abc () {delete str;}
int operator = = (const abc &s) const; // check for

equality abc & operator = (const abc &s); // overloaded

assignment operator

friend abc operator + (const abc &s1, const abc &s2);
} // string concatenation

abc:: abc ()
{

max_length = 10;

str = new char [

max_length]; len = 0;

str [0] = „\0‟;

}

abc :: abc (const abc &s)

{

len = s. len;
max_length = s.max_length;

str = new char [max_length];
strcpy (str, s.str); // physical copying in the new location.

}

[Not: Please note the need of explicit copy constructor as we are using

pointers. For example, if a string object containing string “first” is to be used

to initialise a new string and if we do not use copy constructor then will cause:

Str1

F I R S T ‘\

Str2

That is two pointers pointing to one instance of allocated memory, this will create
problem if we just want to modify the current value of one of the string only. Even

destruction of one string will create problem. That is why we need to create separate space

for the pointed string as:

Str1

F I R S T ‘\

Str2

 F I R S T ‘\

Thus, we have explicitly written the copy constructor. We have also written the explicit

destructor for the class. This will not be a problem if we do not use pointers.

abc :: ~ abc ()
{

delete str;

}

abc & abc :: operator = (const abc &s)

{

if (this ! = &s) // if the left and right hand variables are different

{

len = s.len;

max_length = s.max-length;

delete str; // get rid of old memory space allocated to this string

str = new char [max_length]; // create new locations

strcpy (str, s.str); // copy the content using string copy function

}

return *this;

}

// Please note the use of this operator which is a pointer to object that

invokes the call

to this assignment operator function.

inline int abc :: operator == (const abc &s) const
{

// uses string comparison

function return strcmp (str,s.str);

}

abc abc:: operator + (const abc &s)

abc s3;

s3.len = len + s.len;

s3.max_length = s3.len;

char * newstr = new char [length + 1];

strcpy (newstr, s.str);

strcat (newstr,str);

s3.str = newstr;

return (s3);

}

Overloading << operator:
To overload << operator, the following function may be used:

Ostream & operator << (ostream &s, const abc &x)

{

s<< “The String is:” <<x; }

return s;

}

You can write appropriate main function and use the above

overloaded operators as shown in the complex number example.

