
Software Engineering : by Haridas Kataria

1

Software Engineering

Introduction to Software Engineering

Software is a program or set of programs containing instructions which provide
desired functionality . And Engineering is the processes of designing and
building something that serves a particular purpose and find a cost effective
solution to problems.

Software Engineering is a systematic approach to the design, development,
operation, and maintenance of a software system.

Dual Role of Software:
1. As a product –

• It delivers the computing potential across network of Hardware.
• It enables the Hardware to deliver the expected functionality.
• It acts as information transformer because it produces, manages,

acquires, modifies, displays, or transmits information.
2. As a vehicle for delivering a product –

• It provides system functionality (e.g., payroll system)
• It controls other software (e.g., an operating system)
• It helps build other software (e.g., software tools)

Objectives of Software Engineering:
1. Maintainability –

It should be feasible for the software to evolve to meet changing
requirements.

2. Correctness –
A software product is correct, if the different requirements as specified in
the SRS document have been correctly implemented.

3. Reusability –
A software product has good reusability, if the different modules of the
product can easily be reused to develop new products.

4. Testability –
Here software facilitates both the establishment of test criteria and the
evaluation of the software with respect to those criteria.

5. Reliability –
It is an attribute of software quality. The extent to which a program can be
expected to perform its desired function, over an arbitrary time period.

6. Portability –
In this case, software can be transferred from one computer system or
environment to another.

7. Adaptability –
In this case, software allows differing system constraints and user needs
to be satisfied by making changes to the software.

Software Engineering : by Haridas Kataria

2

Program vs Software Product:
1. Program is a set of instruction related each other where as Software

Product is a collection of program designed for specific task.
2. Programs are usually small in size where as Software Products are

usually large in size.
3. Programs are developed by individuals that means single user where as

Software Product are developed by large no of users.
4. In program, there is no documentation or lack in proper documentation.

In Software Product, Proper documentation and well documented and
user manual prepared.

5. Development of program is Unplanned, not Systematic etc but
Development of Software Product is well Systematic, organised, planned
approach.

6. Programs provide Limited functionality and less features where as
Software Products provides more functionality as they are big in size
(lines of codes) more options and features.

Products and Product Systems

The word product is defined as "a thing produced by labor or effort; or anything produced" (Oxford
English Dictionary). In a commercial sense a product is anything which is acquired, owned and
sustained by an organization and used by an enterprise (hardware, software, information, personnel,
etc.).

A product systems is an engineered systems in which the focus of the life cycle is to developed and
delivered products to an acquirer for internal or external use to directly support the delivery of
services needed by that acquirer.

A product systems life cycle context will describe a technology focused SoI plus the related products,
people and services with which the SoI is required to interact. Note, the people associated with a
product system over its life (e,g, operators, maintainers, producers, etc.) sit outside of the product
SoI, since they are not delivered as part of the product. However, to develop a successful product it is
essential to fully understand its human interfaces and influences as part of its context. The product
context will also define the service systems within which it will be deployed to help provide the
necessary capability to the acquiring enterprise.

In a product life cycle this wider context defines the fixed and agreed relationships within which the
SoI must operate, and the environmental influences within which the life cycle must be delivered. This
gives the product developer the freedom to make solution choices within that context and to ensure
these choices fit into and do not disrupt the wider context.

A product life cycle may need to recommend changes to enabling services such as recruitment and
training of people, or other infrastructure upgrades. Appropriate mechanisms for the implementation
of these changes must be part of the agreement between acquirer and supplier and be integrated into
the product life cycle. A product life cycle may also suggest changes in the wider context which would
enhance the products ownership or use, but those changes need to be negotiated and agreed with
the relevant owners of the systems they relate to before they can be added to the life cycle outputs.

A more detailed discussion of the system theory associated with product systems can be found
in History of Systems Science and an expansion of the application of systems engineering to service
systems in the Product Systems Engineering KA in Part 4.

https://www.sebokwiki.org/wiki/Product_(glossary)
https://www.sebokwiki.org/wiki/Organization_(glossary)
https://www.sebokwiki.org/wiki/Product_System_(glossary)
https://www.sebokwiki.org/wiki/Acquirer_(glossary)
https://www.sebokwiki.org/wiki/Capability_(glossary)
https://www.sebokwiki.org/wiki/Enterprise_(glossary)
https://www.sebokwiki.org/wiki/History_of_Systems_Science
https://www.sebokwiki.org/wiki/Product_Systems_Engineering

Software Engineering : by Haridas Kataria

3

Services and Service Systems

A service can be simply defined as an act of help or assistance, or as any outcome required by one
or more users which can be defined in terms of outcomes and quality of service without detail to how
it is provided (e.g., transport, communications, protection, data processing, etc.). Services are
processes, performances, or experiences that one person or organization does for the benefit of
another, such as custom tailoring a suit; cooking a dinner to order; driving a limousine; mounting a
legal defense; setting a broken bone; teaching a class; or running a business’s information
technology infrastructure and applications. In all cases, service involves deployment of knowledge
and skills (competencies) that one person or organization has for the benefit of another (Lusch and
Vargo 2006), often done as a single, customized job. To be successful, service requires substantial
input from the client and related stakeholder, often referred to as the co-creation of value (Sampson
2001). For example, how can a steak be customized unless the customer tells the waiter how the
customer wants the steak prepared?

A service system is an engineered system created and sustained by an organization that provides
outcomes for clients within an enterprise. A service system context contains the same kinds of
system elements as a product system context, but allows greater freedom for what can be created or
changed to deliver the required service.

A service system life cycle may deliver changes to how existing products and other services are
deployed and used. It may also identify the need to modify existing products or create new products,
in which case it may initiate a related product life cycle. In most cases the service developer will not
have full freedom to change all aspects of the service system context without some negotiation with
related system element owners. In particular people and infrastructure are part of the service context
and changes to how system elements are used to provide desired outcomes are part of the service
life cycle scope.

Differentiate between Open and Closed Systems

An open system is one that interacts with its environment and thus

exchanges information, material, or energy with the environment, including

random and undefined inputs. Open systems are adaptive in nature as they

tend to react with the environment in such a way organizing', in the sense that

they change their continued existence.

Such systems are ‘self organizing’, because they change their organization in

response to changing conditions. A closed system is one, which doesn’t

interact with its environment. Such systems, in business world, are rare. Thus

the systems that are relatively isolated from the environment but not

completely closed are termed closed systems.

Types of System : Physical or Abstract : Physical system is tangible entities

that may be static or dynamic in nature. Abstract system is conceptual or non-

physical. The abstract is conceptualization of physical situations.

Open and Closed : An open system continually interacts with its environment. It
receives input from the outside and delivers output to outside. A closed system is
isolated from environment influences.

https://www.sebokwiki.org/wiki/Service_(glossary)
https://www.sebokwiki.org/wiki/Quality_(glossary)
https://www.sebokwiki.org/wiki/Information_Technology_(glossary)
https://www.sebokwiki.org/wiki/Information_Technology_(glossary)
https://www.sebokwiki.org/wiki/Competency_(glossary)
https://www.sebokwiki.org/wiki/Service_System_(glossary)
https://www.sebokwiki.org/wiki/Organization_(glossary)
http://ecomputernotes.com/mis/information-and-system-concepts/differentiate-between-open-and-closed-systems
http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information

Software Engineering : by Haridas Kataria

4

Sub System and Super System : Each system is part of a large system. The business
firm is viewed as the system or total system when focus is on production, distribution of
goal and sources of profit and income.

The total system consists of all the objects, attributes and relationship necessary to
accomplish an objective given a number of constraints. Sub systems are the smaller
systems within a system. Super system denotes extremely large and complex system

Permanent and Temporary System : A permanent system is a system enduring for a
time span that is long relative to the operation of human. Temporary system is one
having a short time span.

Natural and Man Made System : System which is made by man is called man made
system. Systems which are in the environment made by nature are called natural
system.

Deterministic and Probabilistic : A Deterministic system is one in which the
occurrence of all events is perfectly predictable. If we get the description of the system
state at a particular time, the next state can be easily predicted. Probabilistic system is
one in which the occurrence of events cannot be perfectly predicted.

Man-made Information System : It is generally believed that the information reduces
uncertainty about a state or event. An information system is the basis for interaction
between the user and the analyst. It determines the nature of relationship among
decision makers.

An information system may be defined as a set of devices, procedures and operating
system designed around user-base criteria to produce information and communicating it
to the user for planning control and performance.

What is the difference between a static and
dynamic system?

a) Static systems:

Definition: It is a system in which output at any instant of time depends on input
sample at the same time.

Example:

1) y(n) = 9x(n)

In this example 9 is constant which multiplies input x(n). But output at nth instant
that means y(n) depends on the input at the same (nth) time instant x(n). So this is
static system.

2) y(n) = x2(n) + 8x(n) + 17

Here also output at nth instant, y(n) depends on the input at nth instant. So this is
static system.

Why static systems are memory less systems?

http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information
http://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system
http://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system

Software Engineering : by Haridas Kataria

5

Answer:

Observe the input output relations of static system. Output does not depend on
delayed [x(n-k)] or advanced [x(n+k)] input signals. It only depends on present input
(nth) input signal. If output depends upon delayed input signals then such signals
should be stored in memory to calculate the output at nth instant. This is not required
in static systems. Thus for static systems, memory is not required. Therefore static
systems are memory less systems.

b) Dynamic systems:

Definition: It is a system in which output at any instant of time depends on input
sample at the same time as well as at other times.

Here other time means, other than the present time instant. It may be past time or
future time. Note that if x(n) represents input signal at present instant then,

1) x(n-k); that means delayed input signal is called as past signal.

2) x(n+k); that means advanced input signal is called as future signal.

Thus in dynamic systems, output depends on present input as well as past or future
inputs.

Examples:

1) y(n) = x(n) + 6x(n-2)

Here output at nth instant depends on input at nth instant, x(n) as well as (n-2)th
instant x(n-2) is previous sample. So the system is dynamic.

2) y(n) = 4x(n+7) + x(n)

Here x(n+7) indicates advanced version of input sample that means it is future
sample therefore this is dynamic system.

Emergence of Software Engineering

Software engineering discipline is the result of advancement in the field of

technology. In this section, we will discuss various innovations and

technologies that led to the emergence of software engineering discipline.

Early Computer Programming
As we know that in the early 1950s, computers were slow and expensive. Though the
programs at that time were very small in size, these computers took considerable time to
process them. They relied on assembly language which was specific
to computer architecture. Thus, developing a program required lot of effort. Every
programmer used his own style to develop the programs.

http://ecomputernotes.com/software-engineering/emergence-of-software-engineering
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer

Software Engineering : by Haridas Kataria

6

High Level Language Programming
With the introduction of semiconductor technology, the computers became smaller,
faster, cheaper, and reliable than their predecessors. One of the major developments
includes the progress from assembly language to high-level languages. Early high level
programming languages such as COBOL and FORTRAN came into existence. As a result,
the programming became easier and thus, increased the productivity of the
programmers. However, still the programs were limited in size and the programmers
developed programs using their own style and experience.

Control Flow Based Design
With the advent of powerful machines and high level languages, the usage of computers
grew rapidly: In addition, the nature of programs also changed from simple to complex.
The increased size and the complexity could not be managed by individual style. It was
analyzed that clarity of control flow (the sequence in which the program's instructions
are executed) is of great importance. To help the programmer to design programs having
good control flow structure, flowcharting technique was developed. In flowcharting
technique, the algorithm is represented using flowcharts. A flowchart is a graphical
representation that depicts the sequence of operations to be carried out to solve a given
problem.

Note that having more GOTO constructs in the flowchart makes the control flow messy,
which makes it difficult to understand and debug. In order to provide clarity of control
flow, the use of GOTO constructs in flowcharts should be avoided and structured
constructs-decision, sequence, and loop-should be used to develop structured
flowcharts. The decision structures are used for conditional execution of statements
(for example, if statement). The sequence structures are used for the sequentially
executed statements. The loop structures are used for performing some repetitive tasks
in the program. The use of structured constructs formed the basis of the structured
programming methodology.

Structured programming became a powerful tool that allowed programmers to write
moderately complex programs easily. It forces a logical structure in the program to be
written in an efficient and understandable manner. The purpose of structured
programming is to make the software code easy to modify when required. Some
languages such as Ada, Pascal, and dBase are designed with features that implement the
logical program structure in the software code.

Data-Flow Oriented Design
With the introduction of very Large Scale Integrated circuits (VLSI), the computers
became more powerful and faster. As a result, various significant developments like
networking and GUIs came into being. Clearly, the complexity of software could not be
dealt using control flow based design. Thus, a new technique, namely, data-flow-
oriented technique came into existence. In this technique, the flow of data through
business functions or processes is represented using Data-flow Diagram (DFD).
IEEE defines a data-flow diagram (also known as bubble chartand work-flow
diagram) as 'a diagram that depicts data sources, data sinks, data storage, and
processes performed on data as nodes, and logical flow of data as links between the
nodes.'

http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-semiconductor

Software Engineering : by Haridas Kataria

7

Object Oriented Design
Object-oriented design technique has revolutionized the process of software
development. It not only includes the best features of structured programming but also
some new and powerful features such as encapsulation, abstraction, inheritance, and
polymorphism. These new features have tremendously helped in the development of
well-designed and high-quality software. Object-oriented techniques are widely used
these days as they allow reusability of the code. They lead to faster software development
and high-quality programs. Moreover, they are easier to adapt and scale, that is, large
systems can be created by assembling reusable subsystems.

Software Engineering Overview

Let us first understand what software engineering stands for. The term is

made of two words, software and engineering.

Software is more than just a program code. A program is an executable

code, which serves some computational purpose. Software is considered to

be collection of executable programming code, associated libraries and

documentations. Software, when made for a specific requirement is

called software product.

Engineering on the other hand, is all about developing products, using

well-defined, scientific principles and methods.

Software Engineering : by Haridas Kataria

8

Software engineering is an engineering branch associated with

development of software product using well-defined scientific principles,

methods and procedures. The outcome of software engineering is an

efficient and reliable software product.

Definitions
IEEE defines software engineering as:

(1) The application of a systematic,disciplined,quantifiable approach to

the development,operation and maintenance of software; that is, the

application of engineering to software.

(2) The study of approaches as in the above statement.

Fritz Bauer, a German computer scientist, defines software engineering as:

Software engineering is the establishment and use of sound

engineering principles in order to obtain economically software that is

reliable and work efficiently on real machines.

Software Evolution
The process of developing a software product using software engineering

principles and methods is referred to as software evolution. This includes

Software Engineering : by Haridas Kataria

9

the initial development of software and its maintenance and updates, till

desired software product is developed, which satisfies the expected

requirements.

Evolution starts from the requirement gathering process. After which

developers create a prototype of the intended software and show it to the

users to get their feedback at the early stage of software product

development. The users suggest changes, on which several consecutive

updates and maintenance keep on changing too. This process changes to the

original software, till the desired software is accomplished.

Even after the user has desired software in hand, the advancing technology

and the changing requirements force the software product to change

accordingly. Re-creating software from scratch and to go one-on-one with

requirement is not feasible. The only feasible and economical solution is to

update the existing software so that it matches the latest requirements.

Software Evolution Laws
Lehman has given laws for software evolution. He divided the software into

three different categories:

• S-type (static-type) - This is a software, which works strictly according

to defined specifications and solutions. The solution and the method to

achieve it, both are immediately understood before coding. The s-type

software is least subjected to changes hence this is the simplest of all. For

example, calculator program for mathematical computation.

Software Engineering : by Haridas Kataria

10

• P-type (practical-type) - This is a software with a collection

of procedures. This is defined by exactly what procedures can do. In this

software, the specifications can be described but the solution is not

obvious instantly. For example, gaming software.

• E-type (embedded-type) - This software works closely as the

requirement of real-world environment. This software has a high degree of

evolution as there are various changes in laws, taxes etc. in the real world

situations. For example, Online trading software.

E-Type software evolution
Lehman has given eight laws for E-Type software evolution -

• Continuing change - An E-type software system must continue to adapt

to the real world changes, else it becomes progressively less useful.

• Increasing complexity - As an E-type software system evolves, its

complexity tends to increase unless work is done to maintain or reduce it.

• Conservation of familiarity - The familiarity with the software or the

knowledge about how it was developed, why was it developed in that

particular manner etc. must be retained at any cost, to implement the

changes in the system.

• Continuing growth- In order for an E-type system intended to resolve

some business problem, its size of implementing the changes grows

according to the lifestyle changes of the business.

• Reducing quality - An E-type software system declines in quality unless

rigorously maintained and adapted to a changing operational environment.

• Feedback systems- The E-type software systems constitute multi-loop,

multi-level feedback systems and must be treated as such to be

successfully modified or improved.

• Self-regulation - E-type system evolution processes are self-regulating

with the distribution of product and process measures close to normal.

• Organizational stability - The average effective global activity rate in an

evolving E-type system is invariant over the lifetime of the product.

Software Paradigms

Software Engineering : by Haridas Kataria

11

Software paradigms refer to the methods and steps, which are taken while

designing the software. There are many methods proposed and are in work

today, but we need to see where in the software engineering these

paradigms stand. These can be combined into various categories, though

each of them is contained in one another:

Programming paradigm is a subset of Software design paradigm which is

further a subset of Software development paradigm.

Software Development Paradigm

This Paradigm is known as software engineering paradigms where all the

engineering concepts pertaining to the development of software are applied.

It includes various researches and requirement gathering which helps the

software product to build. It consists of –

• Requirement gathering

• Software design

• Programming

Software Design Paradigm

This paradigm is a part of Software Development and includes –

• Design

Software Engineering : by Haridas Kataria

12

• Maintenance

• Programming

Programming Paradigm

This paradigm is related closely to programming aspect of software

development. This includes –

• Coding

• Testing

• Integration

Need of Software Engineering
The need of software engineering arises because of higher rate of change in

user requirements and environment on which the software is working.

• Large software - It is easier to build a wall than to a house or building,

likewise, as the size of software become large engineering has to step to

give it a scientific process.

• Scalability- If the software process were not based on scientific and

engineering concepts, it would be easier to re-create new software than to

scale an existing one.

• Cost- As hardware industry has shown its skills and huge manufacturing

has lower down he price of computer and electronic hardware. But the cost

of software remains high if proper process is not adapted.

• Dynamic Nature- The always growing and adapting nature of software

hugely depends upon the environment in which user works. If the nature

of software is always changing, new enhancements need to be done in the

existing one. This is where software engineering plays a good role.

• Quality Management- Better process of software development provides

better and quality software product.

Characteristics of good software
A software product can be judged by what it offers and how well it can be

used. This software must satisfy on the following grounds:

Software Engineering : by Haridas Kataria

13

• Operational

• Transitional

• Maintenance

Well-engineered and crafted software is expected to have the following

characteristics:

Operational

This tells us how well software works in operations. It can be measured on:

• Budget

• Usability

• Efficiency

• Correctness

• Functionality

• Dependability

• Security

• Safety

Transitional

This aspect is important when the software is moved from one platform to

another:

• Portability

• Interoperability

• Reusability

• Adaptability

Maintenance

This aspect briefs about how well a software has the capabilities to maintain

itself in the ever-changing environment:

• Modularity

• Maintainability

• Flexibility

Software Engineering : by Haridas Kataria

14

• Scalability

In short, Software engineering is a branch of computer science, which uses

well-defined engineering concepts required to produce efficient, durable,

scalable, in-budget and on-time software products.

SOFTWARE LIFE CYCLE MODELS:

One of the basic notions of the software development process is SDLC models

which stands for Software Development Life Cycle models. SDLC – is a

continuous process, which starts from the moment, when it’s made a decision

to launch the project, and it ends at the moment of its full remove from the

exploitation. There is no one single SDLC model. They are divided into main

groups, each with its features and weaknesses.

Evolving from the first and oldest “waterfall” SDLC model, their variety

significantly expanded. The SDLC models diversity is predetermined by the

wide number of product types – starting with a web application

development to a complex medical software. And if you take one of the SDLC

models mentioned below as the basis – in any case, it should be adjusted to

the features of the product, project, and company. The most used, popular and

important SDLC models are given below:

• Waterfall model

• Iterative model

• Spiral model

• V-shaped model

• Agile model

No matter what type of the models has been chosen, each of them has basic

stages which are used by every software development company. Let’s explore

https://existek.com/blog/how-much-cost-develop-web-application-cost-estimation/
https://existek.com/blog/how-much-cost-develop-web-application-cost-estimation/
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Iterative_and_incremental_development
https://en.wikipedia.org/wiki/Spiral_model
https://en.wikipedia.org/wiki/V-Model_(software_development)
https://en.wikipedia.org/wiki/Agile_software_development
https://existek.com/

Software Engineering : by Haridas Kataria

15

those stages as this is important for the understanding of the each of SDLC

models and the differences between them.

BASIC STAGES OF SOFTWARE DEVELOPMENT LIFE

CYCLE

Stage 1. Planning and requirement analysis

Each software development life cycle model starts with the analysis, in which

the stakeholders of the process

discuss the requirements for the final product. The goal of this stage is the

detailed definition of the system requirements. Besides, it is needed to make

sure that all the process participants have clearly understood the tasks and how

every requirement is going to be implemented. Often, the discussion involves

the QA specialists who can interfere the process with additions even during

the development stage if it is necessary.

Stage 2. Designing project architecture

At the second phase of the software development life cycle, the developers are

actually designing the architecture. All the different technical questions that

may appear on this stage are discussed by all the stakeholders, including the

customer. Also, here are defined the technologies used in the project, team

load, limitations, time frames, and budget. The most appropriate project

decisions are made according to the defined requirements.

Stage 3. Development and programming

After the requirements approved, the process goes to the next stage – actual

development. Programmers start here with the source code writing while

keeping in mind previously defined requirements. The system administrators

adjust the software environment, front-end programmers develop the user

interface of the program and the logics for its interaction with the server.

The programming by itself assumes four stages

Software Engineering : by Haridas Kataria

16

• Algorithm development

• Source code writing

• Compilation

• Testing and debugging

Stage 4. Testing

The testing phase includes the debugging process. All the code flaws missed

during the development are detected here, documented, and passed back to the

developers to fix. The testing process repeats until all the critical issues are

removed and software workflow is stable.

Stage 5. Deployment

When the program is finalized and has no critical issues – it is time to launch

it for the end users. After the new program version release, the tech support

team joins. This department provides user feedback; consult and support users

during the time of exploitation. Moreover, the update of selected components

is included in this phase, to make sure, that the software is up-to-date and is

invulnerable to a security breach.

SDLC MODELS

Waterfall SDLC Model

Waterfall – is a cascade SDLC model, in which development process looks

like the flow, moving step by step through the phases of analysis, projecting,

realization, testing, implementation, and support. This SDLC model includes

gradual execution of every stage completely. This process is strictly

documented and predefined with features expected to every phase of this

software development life cycle model.

Software Engineering : by Haridas Kataria

17

ADVANTAGES DISADVANTAGES

Simple to use and understand The software is ready only after the last stage is over

Management simplicity thanks to its rigidity:

every phase has a defined result and process

review

High risks and uncertainty

Development stages go one by one Not the best choice for complex and object-oriented

projects

Software Engineering : by Haridas Kataria

18

ADVANTAGES DISADVANTAGES

Perfect for the small or mid-sized projects where

requirements are clear and not equivocal

Inappropriate for the long-term projects

Easy to determine the key points in the

development cycle

The progress of the stage is hard to measure while it is

still in the development

Easy to classify and prioritize tasks Integration is done at the very end, which does not

give the option of identifying the problem in advance

Use cases for the Waterfall SDLC model:

• The requirements are precisely documented

• Product definition is stable

• The technologies stack is predefined which makes it not dynamic

• No ambiguous requirements

• The project is short

Iterative SDLC Model

The Iterative SDLC model does not need the full list of requirements before

the project starts. The development process may start with the requirements to

the functional part, which can be expanded later. The process is repetitive,

allowing to make new versions of the product for every cycle. Every iteration

(which last from two to six weeks) includes the development of a separate

component of the system, and after that, this component is added to the

functional developed earlier. Speaking with math terminology, the iterative

model is a realization of the sequential approximation method; that means a

gradual closeness to the planned final product shape.

Software Engineering : by Haridas Kataria

19

ADVANTAGES DISADVANTAGES

Some functions can be quickly

developed at the beginning of the

development lifecycle

Iterative model requires more resources than the

waterfall model

The paralleled development can be

applied

Constant management is required

The progress is easy measurable Issues with architecture or design may occur because

not all the requirements are foreseen during the short

planning stage

The shorter iteration is - the easier

testing and debugging stages are

Bad choice for the small projects

It is easier to control the risks as high-

risk tasks are completed first

The process is difficult to manage

Problems and risks defined within one

iteration can be prevented in the next

sprints

The risks may not be completely determined even at

the final stage of the project

Flexibility and readiness to the changes

in the requirements

Risks analysis requires involvement of the highly-

qualified specialists

Software Engineering : by Haridas Kataria

20

Use cases for the Iteration model:
• The requirements to the final product are strictly predefined

• Applied to the large-scale projects

• The main task is predefined, but the details may advance with the time

Spiral SDLC Model

Spiral model – is SDLC model, which combines architecture and prototyping

by stages. It is a combination of the Iterative and Waterfall SDLC models with

the significant accent on the risk analysis. The main issue of the spiral model

– is defining the right moment to make a step into the next stage. The

preliminary set time frames are recommended as the solution to this issue. The

shift to the next stage is done according to the plan, even if the work on the

previous stage isn’t done yet. The plan is introduced basing on the statistic

data, received during the previous projects even from the personal developer’s

experience.

Software Engineering : by Haridas Kataria

21

ADVANTAGES DISADVANTAGES

Lifecycle is divided into small parts, and if the risk

concentration is higher, the phase can be finished

earlier to address the treats

Can be quite expensive

The development process is precisely documented yet

scalable to the changes

The risk control demands involvement

of the highly-skilled professionals

The scalability allows to make changes and add new

functionality even at the relatively late stages

Can be ineffective for the small

projects

The earlier working prototype is done - sooner users

can point out the flaws

Big number of the intermediate stages

requires excessive documentation

Use cases for the Spiral model
• Customer isn’t sure about the requirements

• Major edits are expected during the development cycle

• The projects with mid or high-level risk, where it is important to prevent these

risks

• The new product that should be released in a few stages to have enough of

clients feedback

V-shaped SDLC Model

V-shaped SDLC model is an expansion of classic waterfall model and it’s

based on associated test stage for the every development stage. This is a very

strict model and the next stage is started only after the previous phase. This is

also called “Validation and verification” model. Every stage has the current

process control, to make sure that the conversion to the next stage is possible.

Software Engineering : by Haridas Kataria

22

ADVANTAGES DISADVANTAGES

Every stage of V-shaped model has strict results so it’s easy to

control

Lack of the flexibility

Testing and verification take place in the early stages Bad choice for the small

projects

Good for the small projects, where requirements are static and clear Relatively big risks

Use cases for the V-shaped model:
• For the projects where an accurate product testing is required

• For the small and mid-sized projects, where requirements are strictly

predefined

• The engineers of the required qualification, especially testers, are within easy

reach.

Agile SDLC Model

In the agile methodology after every development iteration, the customer is

able to see the result and understand if he is satisfied with it or he is not. This

Software Engineering : by Haridas Kataria

23

is one of the advantages of the agile software development life cycle model.

One of its disadvantages is that with the absence of defined requirements it is

difficult to estimate the resources and development cost. Extreme

programming is one of the practical use of the agile model. The basis of such

model consists of short weekly meetings – Sprints which are the part of the

Scrum approach.

ADVANTAGES DISADVANTAGES

Corrections of functional requirements are

implemented into the development process to

provide the competitiveness

Difficulties with measuring the final cost

because of permanent changes

Project is divided by short and transparent

iterations

The team should be highly professional and

client-oriented

Risks are minimized thanks to the flexible change

process

New requirements may conflict with the

existing architecture

Fast release of the first product version With all the corrections and changes there is

possibility that the project will exceed expected

time

Use cases for the Agile model:
• The users’ needs change dynamically

• Less price for the changes implemented because of the many iterations

• Unlike the Waterfall model, it requires only initial planning to start the project

Software Engineering : by Haridas Kataria

24

Software Engineering : by Haridas Kataria

25

SOFTWARE PLANNING

The job pattern of an IT company engaged in software development can be

seen split in two parts:

Software Engineering : by Haridas Kataria

26

• Software Creation

• Software Project Management

A project is well-defined task, which is a collection of several operations

done in order to achieve a goal (for example, software development and

delivery). A Project can be characterized as:

• Every project may has a unique and distinct goal.

• Project is not routine activity or day-to-day operations.

• Project comes with a start time and end time.

• Project ends when its goal is achieved hence it is a temporary phase in the

lifetime of an organization.

• Project needs adequate resources in terms of time, manpower, finance,

material and knowledge-bank.

Software Project
A Software Project is the complete procedure of software development from

requirement gathering to testing and maintenance, carried out according to

the execution methodologies, in a specified period of time to achieve

intended software product.

Need of software project management
Software is said to be an intangible product. Software development is a kind

of all new stream in world business and there’s very little experience in

building software products. Most software products are tailor made to fit

client’s requirements. The most important is that the underlying technology

changes and advances so frequently and rapidly that experience of one

product may not be applied to the other one. All such business and

environmental constraints bring risk in software development hence it is

essential to manage software projects efficiently.

Software Engineering : by Haridas Kataria

27

The image above shows triple constraints for software projects. It is an

essential part of software organization to deliver quality product, keeping the

cost within client’s budget constrain and deliver the project as per

scheduled. There are several factors, both internal and external, which may

impact this triple constrain triangle. Any of three factor can severely impact

the other two.

Therefore, software project management is essential to incorporate user

requirements along with budget and time constraints.

Software Project Manager
A software project manager is a person who undertakes the responsibility of

executing the software project. Software project manager is thoroughly

aware of all the phases of SDLC that the software would go through. Project

manager may never directly involve in producing the end product but he

controls and manages the activities involved in production.

A project manager closely monitors the development process, prepares and

executes various plans, arranges necessary and adequate resources,

maintains communication among all team members in order to address

issues of cost, budget, resources, time, quality and customer satisfaction.

Let us see few responsibilities that a project manager shoulders -

Managing People

• Act as project leader

• Liaison with stakeholders

• Managing human resources

• Setting up reporting hierarchy etc.

Software Engineering : by Haridas Kataria

28

Managing Project

• Defining and setting up project scope

• Managing project management activities

• Monitoring progress and performance

• Risk analysis at every phase

• Take necessary step to avoid or come out of problems

• Act as project spokesperson

Software Management Activities
Software project management comprises of a number of activities, which

contains planning of project, deciding scope of software product, estimation

of cost in various terms, scheduling of tasks and events, and resource

management. Project management activities may include:

• Project Planning

• Scope Management

• Project Estimation

Project Planning
Software project planning is task, which is performed before the production

of software actually starts. It is there for the software production but

involves no concrete activity that has any direction connection with software

production; rather it is a set of multiple processes, which facilitates software

production. Project planning may include the following:

Scope Management
It defines the scope of project; this includes all the activities, process need

to be done in order to make a deliverable software product. Scope

management is essential because it creates boundaries of the project by

clearly defining what would be done in the project and what would not be

done. This makes project to contain limited and quantifiable tasks, which can

easily be documented and in turn avoids cost and time overrun.

During Project Scope management, it is necessary to -

Software Engineering : by Haridas Kataria

29

• Define the scope

• Decide its verification and control

• Divide the project into various smaller parts for ease of management.

• Verify the scope

• Control the scope by incorporating changes to the scope

Project Estimation
For an effective management accurate estimation of various measures is a

must. With correct estimation managers can manage and control the project

more efficiently and effectively.

Project estimation may involve the following:

• Software size estimation

Software size may be estimated either in terms of KLOC (Kilo Line of

Code) or by calculating number of function points in the software. Lines of

code depend upon coding practices and Function points vary according to

the user or software requirement.

• Effort estimation

The managers estimate efforts in terms of personnel requirement and

man-hour required to produce the software. For effort estimation

software size should be known. This can either be derived by managers’

experience, organization’s historical data or software size can be

converted into efforts by using some standard formulae.

• Time estimation

Once size and efforts are estimated, the time required to produce the

software can be estimated. Efforts required is segregated into sub

categories as per the requirement specifications and interdependency of

various components of software. Software tasks are divided into smaller

tasks, activities or events by Work Breakthrough Structure (WBS). The

tasks are scheduled on day-to-day basis or in calendar months.

The sum of time required to complete all tasks in hours or days is the

total time invested to complete the project.

Software Engineering : by Haridas Kataria

30

• Cost estimation

This might be considered as the most difficult of all because it depends on

more elements than any of the previous ones. For estimating project cost,

it is required to consider -

o Size of software

o Software quality

o Hardware

o Additional software or tools, licenses etc.

o Skilled personnel with task-specific skills

o Travel involved

o Communication

o Training and support

Project Estimation Techniques
We discussed various parameters involving project estimation such as size,

effort, time and cost.

Project manager can estimate the listed factors using two broadly recognized

techniques –

Decomposition Technique

This technique assumes the software as a product of various compositions.

There are two main models -

• Line of Code Estimation is done on behalf of number of line of codes in

the software product.

• Function Points Estimation is done on behalf of number of function

points in the software product.

Empirical Estimation Technique

This technique uses empirically derived formulae to make estimation.These

formulae are based on LOC or FPs.

• Putnam Model

Software Engineering : by Haridas Kataria

31

This model is made by Lawrence H. Putnam, which is based on Norden’s

frequency distribution (Rayleigh curve). Putnam model maps time and

efforts required with software size.

• COCOMO

COCOMO stands for COnstructive COst MOdel, developed by Barry W.

Boehm. It divides the software product into three categories of software:

organic, semi-detached and embedded.

Project Scheduling
Project Scheduling in a project refers to roadmap of all activities to be done

with specified order and within time slot allotted to each activity. Project

managers tend to define various tasks, and project milestones and them

arrange them keeping various factors in mind. They look for tasks lie in

critical path in the schedule, which are necessary to complete in specific

manner (because of task interdependency) and strictly within the time

allocated. Arrangement of tasks which lies out of critical path are less likely

to impact over all schedule of the project.

For scheduling a project, it is necessary to -

• Break down the project tasks into smaller, manageable form

• Find out various tasks and correlate them

• Estimate time frame required for each task

• Divide time into work-units

• Assign adequate number of work-units for each task

• Calculate total time required for the project from start to finish

Resource management
All elements used to develop a software product may be assumed as

resource for that project. This may include human resource, productive tools

and software libraries.

The resources are available in limited quantity and stay in the organization

as a pool of assets. The shortage of resources hampers the development of

project and it can lag behind the schedule. Allocating extra resources

Software Engineering : by Haridas Kataria

32

increases development cost in the end. It is therefore necessary to estimate

and allocate adequate resources for the project.

Resource management includes -

• Defining proper organization project by creating a project team and

allocating responsibilities to each team member

• Determining resources required at a particular stage and their availability

• Manage Resources by generating resource request when they are required

and de-allocating them when they are no more needed.

Project Risk Management
Risk management involves all activities pertaining to identification, analyzing

and making provision for predictable and non-predictable risks in the

project. Risk may include the following:

• Experienced staff leaving the project and new staff coming in.

• Change in organizational management.

• Requirement change or misinterpreting requirement.

• Under-estimation of required time and resources.

• Technological changes, environmental changes, business competition.

Risk Management Process
There are following activities involved in risk management process:

• Identification - Make note of all possible risks, which may occur in the

project.

• Categorize - Categorize known risks into high, medium and low risk

intensity as per their possible impact on the project.

• Manage - Analyze the probability of occurrence of risks at various phases.

Make plan to avoid or face risks. Attempt to minimize their side-effects.

• Monitor - Closely monitor the potential risks and their early symptoms.

Also monitor the effects of steps taken to mitigate or avoid them.

Project Execution & Monitoring

Software Engineering : by Haridas Kataria

33

In this phase, the tasks described in project plans are executed according to

their schedules.

Execution needs monitoring in order to check whether everything is going

according to the plan. Monitoring is observing to check the probability of risk

and taking measures to address the risk or report the status of various

tasks.

These measures include -

• Activity Monitoring - All activities scheduled within some task can be

monitored on day-to-day basis. When all activities in a task are completed,

it is considered as complete.

• Status Reports - The reports contain status of activities and tasks

completed within a given time frame, generally a week. Status can be

marked as finished, pending or work-in-progress etc.

• Milestones Checklist - Every project is divided into multiple phases

where major tasks are performed (milestones) based on the phases of

SDLC. This milestone checklist is prepared once every few weeks and

reports the status of milestones.

Project Communication Management
Effective communication plays vital role in the success of a project. It

bridges gaps between client and the organization, among the team members

as well as other stake holders in the project such as hardware suppliers.

Communication can be oral or written. Communication management process

may have the following steps:

• Planning - This step includes the identifications of all the stakeholders in

the project and the mode of communication among them. It also considers

if any additional communication facilities are required.

• Sharing - After determining various aspects of planning, manager focuses

on sharing correct information with the correct person on correct time.

This keeps every one involved the project up to date with project progress

and its status.

Software Engineering : by Haridas Kataria

34

• Feedback - Project managers use various measures and feedback

mechanism and create status and performance reports. This mechanism

ensures that input from various stakeholders is coming to the project

manager as their feedback.

• Closure - At the end of each major event, end of a phase of SDLC or end

of the project itself, administrative closure is formally announced to

update every stakeholder by sending email, by distributing a hardcopy of

document or by other mean of effective communication.

After closure, the team moves to next phase or project.

Configuration Management
Configuration management is a process of tracking and controlling the

changes in software in terms of the requirements, design, functions and

development of the product.

IEEE defines it as “the process of identifying and defining the items in the

system, controlling the change of these items throughout their life cycle,

recording and reporting the status of items and change requests, and

verifying the completeness and correctness of items”.

Generally, once the SRS is finalized there is less chance of requirement of

changes from user. If they occur, the changes are addressed only with prior

approval of higher management, as there is a possibility of cost and time

overrun.

Baseline

A phase of SDLC is assumed over if it baselined, i.e. baseline is a

measurement that defines completeness of a phase. A phase is baselined

when all activities pertaining to it are finished and well documented. If it was

not the final phase, its output would be used in next immediate phase.

Configuration management is a discipline of organization administration,

which takes care of occurrence of any change (process, requirement,

technological, strategical etc.) after a phase is baselined. CM keeps check on

any changes done in software.

Change Control

Software Engineering : by Haridas Kataria

35

Change control is function of configuration management, which ensures that

all changes made to software system are consistent and made as per

organizational rules and regulations.

A change in the configuration of product goes through following steps -

• Identification - A change request arrives from either internal or external

source. When change request is identified formally, it is properly

documented.

• Validation - Validity of the change request is checked and its handling

procedure is confirmed.

• Analysis - The impact of change request is analyzed in terms of schedule,

cost and required efforts. Overall impact of the prospective change on

system is analyzed.

• Control - If the prospective change either impacts too many entities in

the system or it is unavoidable, it is mandatory to take approval of high

authorities before change is incorporated into the system. It is decided if

the change is worth incorporation or not. If it is not, change request is

refused formally.

• Execution - If the previous phase determines to execute the change

request, this phase take appropriate actions to execute the change, does

a thorough revision if necessary.

• Close request - The change is verified for correct implementation and

merging with the rest of the system. This newly incorporated change in

the software is documented properly and the request is formally is closed.

Project Management Tools
The risk and uncertainty rises multifold with respect to the size of the

project, even when the project is developed according to set methodologies.

There are tools available, which aid for effective project management. A few

are described -

Gantt Chart

Software Engineering : by Haridas Kataria

36

Gantt charts was devised by Henry Gantt (1917). It represents project

schedule with respect to time periods. It is a horizontal bar chart with bars

representing activities and time scheduled for the project activities.

PERT Chart

PERT (Program Evaluation & Review Technique) chart is a tool that depicts

project as network diagram. It is capable of graphically representing main

events of project in both parallel and consecutive way. Events, which occur

one after another, show dependency of the later event over the previous

one.

Events are shown as numbered nodes. They are connected by labeled

arrows depicting sequence of tasks in the project.

Resource Histogram

This is a graphical tool that contains bar or chart representing number of

resources (usually skilled staff) required over time for a project event (or

phase). Resource Histogram is an effective tool for staff planning and

coordination.

Software Engineering : by Haridas Kataria

37

Critical Path Analysis

This tools is useful in recognizing interdependent tasks in the project. It also

helps to find out the shortest path or critical path to complete the project

successfully. Like PERT diagram, each event is allotted a specific time frame.

This tool shows dependency of event assuming an event can proceed to next

only if the previous one is completed.

The events are arranged according to their earliest possible start time. Path

between start and end node is critical path which cannot be further reduced

and all events require to be executed in same order.

Software Analysis

Software Engineering : by Haridas Kataria

38

Software analysis and design includes all activities, which help the

transformation of requirement specification into implementation.

Requirement specifications specify all functional and non-functional

expectations from the software. These requirement specifications come in

the shape of human readable and understandable documents, to which a

computer has nothing to do.

Software analysis and design is the intermediate stage, which helps human-

readable requirements to be transformed into actual code.

Let us see few analysis and design tools used by software designers:

Data Flow Diagram
Data flow diagram is graphical representation of flow of data in an

information system. It is capable of depicting incoming data flow, outgoing

data flow and stored data. The DFD does not mention anything about how

data flows through the system.

There is a prominent difference between DFD and Flowchart. The flowchart

depicts flow of control in program modules. DFDs depict flow of data in the

system at various levels. DFD does not contain any control or branch

elements.

Types of DFD

Data Flow Diagrams are either Logical or Physical.

• Logical DFD - This type of DFD concentrates on the system process, and

flow of data in the system.For example in a Banking software system, how

data is moved between different entities.

• Physical DFD - This type of DFD shows how the data flow is actually

implemented in the system. It is more specific and close to the

implementation.

DFD Components

DFD can represent Source, destination, storage and flow of data using the

following set of components -

Software Engineering : by Haridas Kataria

39

• Entities - Entities are source and destination of information data. Entities

are represented by a rectangles with their respective names.

• Process - Activities and action taken on the data are represented by

Circle or Round-edged rectangles.

• Data Storage - There are two variants of data storage - it can either be

represented as a rectangle with absence of both smaller sides or as an

open-sided rectangle with only one side missing.

• Data Flow - Movement of data is shown by pointed arrows. Data

movement is shown from the base of arrow as its source towards head of

the arrow as destination.

Levels of DFD

• Level 0 - Highest abstraction level DFD is known as Level 0 DFD, which

depicts the entire information system as one diagram concealing all the

underlying details. Level 0 DFDs are also known as context level DFDs.

• Level 1 - The Level 0 DFD is broken down into more specific, Level 1 DFD.

Level 1 DFD depicts basic modules in the system and flow of data among

various modules. Level 1 DFD also mentions basic processes and sources

of information.

Software Engineering : by Haridas Kataria

40

• Level 2 - At this level, DFD shows how data flows inside the modules

mentioned in Level 1.

Higher level DFDs can be transformed into more specific lower level DFDs

with deeper level of understanding unless the desired level of

specification is achieved.

Structure Charts
Structure chart is a chart derived from Data Flow Diagram. It represents the

system in more detail than DFD. It breaks down the entire system into

lowest functional modules, describes functions and sub-functions of each

module of the system to a greater detail than DFD.

Structure chart represents hierarchical structure of modules. At each layer a

specific task is performed.

Here are the symbols used in construction of structure charts -

• Module - It represents process or subroutine or task. A control module

branches to more than one sub-module. Library Modules are re-usable and

Software Engineering : by Haridas Kataria

41

invokable from any module.

• Condition - It is represented by small diamond at the base of module. It

depicts that control module can select any of sub-routine based on some

condition.

• Jump - An arrow is shown pointing inside the module to depict that the

control will jump in the middle of the sub-module.

Software Engineering : by Haridas Kataria

42

• Loop - A curved arrow represents loop in the module. All sub-modules

covered by loop repeat execution of module.

• Data flow - A directed arrow with empty circle at the end represents data

flow.

• Control flow - A directed arrow with filled circle at the end represents

control flow.

HIPO Diagram
HIPO (Hierarchical Input Process Output) diagram is a combination of two

organized method to analyze the system and provide the means of

documentation. HIPO model was developed by IBM in year 1970.

HIPO diagram represents the hierarchy of modules in the software system.

Analyst uses HIPO diagram in order to obtain high-level view of system

functions. It decomposes functions into sub-functions in a hierarchical

manner. It depicts the functions performed by system.

Software Engineering : by Haridas Kataria

43

HIPO diagrams are good for documentation purpose. Their graphical

representation makes it easier for designers and managers to get the

pictorial idea of the system structure.

In contrast to IPO (Input Process Output) diagram, which depicts the flow of

control and data in a module, HIPO does not provide any information about

data flow or control flow.

Example

Both parts of HIPO diagram, Hierarchical presentation and IPO Chart are

used for structure design of software program as well as documentation of

the same.

Structured English
Most programmers are unaware of the large picture of software so they only

rely on what their managers tell them to do. It is the responsibility of higher

software management to provide accurate information to the programmers

to develop accurate yet fast code.

Software Engineering : by Haridas Kataria

44

Other forms of methods, which use graphs or diagrams, may are sometimes

interpreted differently by different people.

Hence, analysts and designers of the software come up with tools such as

Structured English. It is nothing but the description of what is required to

code and how to code it. Structured English helps the programmer to write

error-free code.

Other form of methods, which use graphs or diagrams, may are sometimes

interpreted differently by different people. Here, both Structured English and

Pseudo-Code tries to mitigate that understanding gap.

Structured English is the It uses plain English words in structured

programming paradigm. It is not the ultimate code but a kind of description

what is required to code and how to code it. The following are some tokens

of structured programming.

IF-THEN-ELSE,

DO-WHILE-UNTIL

Analyst uses the same variable and data name, which are stored in Data

Dictionary, making it much simpler to write and understand the code.

Example

We take the same example of Customer Authentication in the online

shopping environment. This procedure to authenticate customer can be

written in Structured English as:

Enter Customer_Name

SEEK Customer_Name in Customer_Name_DB file

IF Customer_Name found THEN

 Call procedure USER_PASSWORD_AUTHENTICATE()

ELSE

 PRINT error message

 Call procedure NEW_CUSTOMER_REQUEST()

ENDIF

The code written in Structured English is more like day-to-day spoken

English. It can not be implemented directly as a code of software. Structured

English is independent of programming language.

Software Engineering : by Haridas Kataria

45

Pseudo-Code
Pseudo code is written more close to programming language. It may be

considered as augmented programming language, full of comments and

descriptions.

Pseudo code avoids variable declaration but they are written using some

actual programming language’s constructs, like C, Fortran, Pascal etc.

Pseudo code contains more programming details than Structured English. It

provides a method to perform the task, as if a computer is executing the

code.

Example

Program to print Fibonacci up to n numbers.

void function Fibonacci

Get value of n;

Set value of a to 1;

Set value of b to 1;

Initialize I to 0

for (i=0; i< n; i++)

{

 if a greater than b

 {

 Increase b by a;

 Print b;

 }

 else if b greater than a

 {

 increase a by b;

 print a;

 }

}

Decision Tables

Software Engineering : by Haridas Kataria

46

A Decision table represents conditions and the respective actions to be taken

to address them, in a structured tabular format.

It is a powerful tool to debug and prevent errors. It helps group similar

information into a single table and then by combining tables it delivers easy

and convenient decision-making.

Creating Decision Table

To create the decision table, the developer must follow basic four steps:

• Identify all possible conditions to be addressed

• Determine actions for all identified conditions

• Create Maximum possible rules

• Define action for each rule

Decision Tables should be verified by end-users and can lately be simplified

by eliminating duplicate rules and actions.

Example

Let us take a simple example of day-to-day problem with our Internet

connectivity. We begin by identifying all problems that can arise while

starting the internet and their respective possible solutions.

We list all possible problems under column conditions and the prospective

actions under column Actions.

 Conditions/Actions Rules

Conditions

Shows Connected N N N N Y Y Y Y

Ping is Working N N Y Y N N Y Y

Opens Website Y N Y N Y N Y N

Actions

Check network cable X

Check internet router X X X X

Restart Web Browser X

Contact Service provider X X X X X X

Software Engineering : by Haridas Kataria

47

Do no action

Table : Decision Table – In-house Internet Troubleshooting

Entity-Relationship Model
Entity-Relationship model is a type of database model based on the notion of

real world entities and relationship among them. We can map real world

scenario onto ER database model. ER Model creates a set of entities with

their attributes, a set of constraints and relation among them.

ER Model is best used for the conceptual design of database. ER Model can

be represented as follows :

• Entity - An entity in ER Model is a real world being, which has some properties

called attributes. Every attribute is defined by its corresponding set of values,

called domain.

For example, Consider a school database. Here, a student is an entity. Student

has various attributes like name, id, age and class etc.

• Relationship - The logical association among entities is called relationship.

Relationships are mapped with entities in various ways. Mapping cardinalities

define the number of associations between two entities.

Mapping cardinalities:

o one to one

o one to many

o many to one

o many to many

Data Dictionary
Data dictionary is the centralized collection of information about data. It

stores meaning and origin of data, its relationship with other data, data

format for usage etc. Data dictionary has rigorous definitions of all names in

order to facilitate user and software designers.

Software Engineering : by Haridas Kataria

48

Data dictionary is often referenced as meta-data (data about data)

repository. It is created along with DFD (Data Flow Diagram) model of

software program and is expected to be updated whenever DFD is changed

or updated.

Requirement of Data Dictionary

The data is referenced via data dictionary while designing and implementing

software. Data dictionary removes any chances of ambiguity. It helps

keeping work of programmers and designers synchronized while using same

object reference everywhere in the program.

Data dictionary provides a way of documentation for the complete database

system in one place. Validation of DFD is carried out using data dictionary.

Contents

Data dictionary should contain information about the following

• Data Flow

• Data Structure

• Data Elements

• Data Stores

• Data Processing

Data Flow is described by means of DFDs as studied earlier and represented

in algebraic form as described.

= Composed of

{} Repetition

() Optional

+ And

[/] Or

Example

Address = House No + (Street / Area) + City + State

Course ID = Course Number + Course Name + Course Level + Course

Grades

Software Engineering : by Haridas Kataria

49

Data Elements

Data elements consist of Name and descriptions of Data and Control Items,

Internal or External data stores etc. with the following details:

• Primary Name

• Secondary Name (Alias)

• Use-case (How and where to use)

• Content Description (Notation etc.)

• Supplementary Information (preset values, constraints etc.)

Data Store

It stores the information from where the data enters into the system and

exists out of the system. The Data Store may include -

• Files

o Internal to software.

o External to software but on the same machine.

o External to software and system, located on different machine.

• Tables

o Naming convention

o Indexing property

Data Processing

There are two types of Data Processing:

• Logical: As user sees it

• Physical: As software sees it

Software Requirements

The software requirements are description of features and functionalities of

the target system. Requirements convey the expectations of users from the

software product. The requirements can be obvious or hidden, known or

unknown, expected or unexpected from client’s point of view.

Software Engineering : by Haridas Kataria

50

Requirement Engineering
The process to gather the software requirements from client, analyze and

document them is known as requirement engineering.

The goal of requirement engineering is to develop and maintain

sophisticated and descriptive ‘System Requirements Specification’ document.

Requirement Engineering Process
It is a four step process, which includes –

• Feasibility Study

• Requirement Gathering

• Software Requirement Specification

• Software Requirement Validation

Let us see the process briefly -

Feasibility study

When the client approaches the organization for getting the desired product

developed, it comes up with rough idea about what all functions the software

must perform and which all features are expected from the software.

Referencing to this information, the analysts does a detailed study about

whether the desired system and its functionality are feasible to develop.

This feasibility study is focused towards goal of the organization. This study

analyzes whether the software product can be practically materialized in

terms of implementation, contribution of project to organization, cost

constraints and as per values and objectives of the organization. It explores

technical aspects of the project and product such as usability,

maintainability, productivity and integration ability.

The output of this phase should be a feasibility study report that should

contain adequate comments and recommendations for management about

whether or not the project should be undertaken.

Requirement Gathering

If the feasibility report is positive towards undertaking the project, next

phase starts with gathering requirements from the user. Analysts and

Software Engineering : by Haridas Kataria

51

engineers communicate with the client and end-users to know their ideas on

what the software should provide and which features they want the software

to include.

Software Requirement Specification

SRS is a document created by system analyst after the requirements are

collected from various stakeholders.

SRS defines how the intended software will interact with hardware, external

interfaces, speed of operation, response time of system, portability of

software across various platforms, maintainability, speed of recovery after

crashing, Security, Quality, Limitations etc.

The requirements received from client are written in natural language. It is

the responsibility of system analyst to document the requirements in

technical language so that they can be comprehended and useful by the

software development team.

SRS should come up with following features:

• User Requirements are expressed in natural language.

• Technical requirements are expressed in structured language, which is

used inside the organization.

• Design description should be written in Pseudo code.

• Format of Forms and GUI screen prints.

• Conditional and mathematical notations for DFDs etc.

Software Requirement Validation

After requirement specifications are developed, the requirements mentioned

in this document are validated. User might ask for illegal, impractical

solution or experts may interpret the requirements incorrectly. This results

in huge increase in cost if not nipped in the bud. Requirements can be

checked against following conditions -

• If they can be practically implemented

• If they are valid and as per functionality and domain of software

• If there are any ambiguities

Software Engineering : by Haridas Kataria

52

• If they are complete

• If they can be demonstrated

Requirement Elicitation Process
Requirement elicitation process can be depicted using the folloiwng diagram:

• Requirements gathering - The developers discuss with the client and

end users and know their expectations from the software.

• Organizing Requirements - The developers prioritize and arrange the

requirements in order of importance, urgency and convenience.

• Negotiation & discussion - If requirements are ambiguous or there are

some conflicts in requirements of various stakeholders, if they are, it is

then negotiated and discussed with stakeholders. Requirements may then

be prioritized and reasonably compromised.

The requirements come from various stakeholders. To remove the

ambiguity and conflicts, they are discussed for clarity and correctness.

Unrealistic requirements are compromised reasonably.

• Documentation - All formal & informal, functional and non-functional

requirements are documented and made available for next phase

processing.

Requirement Elicitation Techniques
Requirements Elicitation is the process to find out the requirements for an

intended software system by communicating with client, end users, system

users and others who have a stake in the software system development.

There are various ways to discover requirements

Interviews

Interviews are strong medium to collect requirements. Organization may

conduct several types of interviews such as:

Software Engineering : by Haridas Kataria

53

• Structured (closed) interviews, where every single information to gather is

decided in advance, they follow pattern and matter of discussion firmly.

• Non-structured (open) interviews, where information to gather is not

decided in advance, more flexible and less biased.

• Oral interviews

• Written interviews

• One-to-one interviews which are held between two persons across the

table.

• Group interviews which are held between groups of participants. They help

to uncover any missing requirement as numerous people are involved.

Surveys

Organization may conduct surveys among various stakeholders by querying

about their expectation and requirements from the upcoming system.

Questionnaires

A document with pre-defined set of objective questions and respective

options is handed over to all stakeholders to answer, which are collected and

compiled.

A shortcoming of this technique is, if an option for some issue is not

mentioned in the questionnaire, the issue might be left unattended.

Task analysis

Team of engineers and developers may analyze the operation for which the

new system is required. If the client already has some software to perform

certain operation, it is studied and requirements of proposed system are

collected.

Domain Analysis

Every software falls into some domain category. The expert people in the

domain can be a great help to analyze general and specific requirements.

Brainstorming

An informal debate is held among various stakeholders and all their inputs

are recorded for further requirements analysis.

Prototyping

Software Engineering : by Haridas Kataria

54

Prototyping is building user interface without adding detail functionality for

user to interpret the features of intended software product. It helps giving

better idea of requirements. If there is no software installed at client’s end

for developer’s reference and the client is not aware of its own requirements,

the developer creates a prototype based on initially mentioned

requirements. The prototype is shown to the client and the feedback is

noted. The client feedback serves as an input for requirement gathering.

Observation

Team of experts visit the client’s organization or workplace. They observe

the actual working of the existing installed systems. They observe the

workflow at client’s end and how execution problems are dealt. The team

itself draws some conclusions which aid to form requirements expected from

the software.

Software Requirements Characteristics
Gathering software requirements is the foundation of the entire software

development project. Hence they must be clear, correct and well-defined.

A complete Software Requirement Specifications must be:

• Clear

• Correct

• Consistent

• Coherent

• Comprehensible

• Modifiable

• Verifiable

• Prioritized

• Unambiguous

• Traceable

• Credible source

Software Requirements

Software Engineering : by Haridas Kataria

55

We should try to understand what sort of requirements may arise in the

requirement elicitation phase and what kinds of requirements are expected

from the software system.

Broadly software requirements should be categorized in two categories:

Functional Requirements

Requirements, which are related to functional aspect of software fall into this

category.

They define functions and functionality within and from the software system.

EXAMPLES -

• Search option given to user to search from various invoices.

• User should be able to mail any report to management.

• Users can be divided into groups and groups can be given separate rights.

• Should comply business rules and administrative functions.

• Software is developed keeping downward compatibility intact.

Non-Functional Requirements

Requirements, which are not related to functional aspect of software, fall

into this category. They are implicit or expected characteristics of software,

which users make assumption of.

Non-functional requirements include -

• Security

• Logging

• Storage

• Configuration

• Performance

• Cost

• Interoperability

• Flexibility

• Disaster recovery

Software Engineering : by Haridas Kataria

56

• Accessibility

Requirements are categorized logically as

• Must Have : Software cannot be said operational without them.

• Should have : Enhancing the functionality of software.

• Could have : Software can still properly function with these requirements.

• Wish list : These requirements do not map to any objectives of software.

While developing software, ‘Must have’ must be implemented, ‘Should have’

is a matter of debate with stakeholders and negation, whereas ‘could have’

and ‘wish list’ can be kept for software updates.

User Interface requirements
UI is an important part of any software or hardware or hybrid system. A

software is widely accepted if it is -

• easy to operate

• quick in response

• effectively handling operational errors

• providing simple yet consistent user interface

User acceptance majorly depends upon how user can use the software. UI is

the only way for users to perceive the system. A well performing software

system must also be equipped with attractive, clear, consistent and

responsive user interface. Otherwise the functionalities of software system

can not be used in convenient way. A system is said be good if it provides

means to use it efficiently. User interface requirements are briefly mentioned

below -

• Content presentation

• Easy Navigation

• Simple interface

• Responsive

• Consistent UI elements

• Feedback mechanism

Software Engineering : by Haridas Kataria

57

• Default settings

• Purposeful layout

• Strategical use of color and texture.

• Provide help information

• User centric approach

• Group based view settings.

Software System Analyst
System analyst in an IT organization is a person, who analyzes the

requirement of proposed system and ensures that requirements are

conceived and documented properly & correctly. Role of an analyst starts

during Software Analysis Phase of SDLC. It is the responsibility of analyst to

make sure that the developed software meets the requirements of the client.

System Analysts have the following responsibilities:

• Analyzing and understanding requirements of intended software

• Understanding how the project will contribute in the organization

objectives

• Identify sources of requirement

• Validation of requirement

• Develop and implement requirement management plan

• Documentation of business, technical, process and product requirements

• Coordination with clients to prioritize requirements and remove and

ambiguity

• Finalizing acceptance criteria with client and other stakeholders

Software Metrics and Measures
Software Measures can be understood as a process of quantifying and

symbolizing various attributes and aspects of software.

Software Metrics provide measures for various aspects of software process

and software product.

Software Engineering : by Haridas Kataria

58

Software measures are fundamental requirement of software engineering.

They not only help to control the software development process but also aid

to keep quality of ultimate product excellent.

According to Tom DeMarco, a (Software Engineer), “You cannot control what

you cannot measure.” By his saying, it is very clear how important software

measures are.

Let us see some software metrics:

• Size Metrics - LOC (Lines of Code), mostly calculated in thousands of

delivered source code lines, denoted as KLOC.

Function Point Count is measure of the functionality provided by the

software. Function Point count defines the size of functional aspect of

software.

• Complexity Metrics - McCabe’s Cyclomatic complexity quantifies the

upper bound of the number of independent paths in a program, which is

perceived as complexity of the program or its modules. It is represented in

terms of graph theory concepts by using control flow graph.

• Quality Metrics - Defects, their types and causes, consequence, intensity

of severity and their implications define the quality of product.

The number of defects found in development process and number of

defects reported by the client after the product is installed or delivered at

client-end, define quality of product.

• Process Metrics - In various phases of SDLC, the methods and tools

used, the company standards and the performance of development are

software process metrics.

• Resource Metrics - Effort, time and various resources used, represents

metrics for resource measurement.

Software Design Basics

Software Engineering : by Haridas Kataria

59

Software design is a process to transform user requirements into some

suitable form, which helps the programmer in software coding and

implementation.

For assessing user requirements, an SRS (Software Requirement

Specification) document is created whereas for coding and implementation,

there is a need of more specific and detailed requirements in software terms.

The output of this process can directly be used into implementation in

programming languages.

Software design is the first step in SDLC (Software Design Life Cycle), which

moves the concentration from problem domain to solution domain. It tries to

specify how to fulfill the requirements mentioned in SRS.

Software Design Levels
Software design yields three levels of results:

• Architectural Design - The architectural design is the highest abstract

version of the system. It identifies the software as a system with many

components interacting with each other. At this level, the designers get

the idea of proposed solution domain.

• High-level Design- The high-level design breaks the ‘single entity-

multiple component’ concept of architectural design into less-abstracted

view of sub-systems and modules and depicts their interaction with each

other. High-level design focuses on how the system along with all of its

components can be implemented in forms of modules. It recognizes

modular structure of each sub-system and their relation and interaction

among each other.

• Detailed Design- Detailed design deals with the implementation part of

what is seen as a system and its sub-systems in the previous two designs.

It is more detailed towards modules and their implementations. It defines

logical structure of each module and their interfaces to communicate with

other modules.

Modularization

Software Engineering : by Haridas Kataria

60

Modularization is a technique to divide a software system into multiple

discrete and independent modules, which are expected to be capable of

carrying out task(s) independently. These modules may work as basic

constructs for the entire software. Designers tend to design modules such

that they can be executed and/or compiled separately and independently.

Modular design unintentionally follows the rules of ‘divide and conquer’

problem-solving strategy this is because there are many other benefits

attached with the modular design of a software.

Advantage of modularization:

• Smaller components are easier to maintain

• Program can be divided based on functional aspects

• Desired level of abstraction can be brought in the program

• Components with high cohesion can be re-used again

• Concurrent execution can be made possible

• Desired from security aspect

Concurrency
Back in time, all software are meant to be executed sequentially. By

sequential execution we mean that the coded instruction will be executed

one after another implying only one portion of program being activated at

any given time. Say, a software has multiple modules, then only one of all

the modules can be found active at any time of execution.

In software design, concurrency is implemented by splitting the software

into multiple independent units of execution, like modules and executing

them in parallel. In other words, concurrency provides capability to the

software to execute more than one part of code in parallel to each other.

It is necessary for the programmers and designers to recognize those

modules, which can be made parallel execution.

Example

The spell check feature in word processor is a module of software, which

runs along side the word processor itself.

Software Engineering : by Haridas Kataria

61

Coupling and Cohesion
When a software program is modularized, its tasks are divided into several

modules based on some characteristics. As we know, modules are set of

instructions put together in order to achieve some tasks. They are though,

considered as single entity but may refer to each other to work together.

There are measures by which the quality of a design of modules and their

interaction among them can be measured. These measures are called

coupling and cohesion.

Cohesion
Cohesion is a measure that defines the degree of intra-dependability within

elements of a module. The greater the cohesion, the better is the program

design.

There are seven types of cohesion, namely –

• Co-incidental cohesion - It is unplanned and random cohesion, which

might be the result of breaking the program into smaller modules for the

sake of modularization. Because it is unplanned, it may serve confusion to

the programmers and is generally not-accepted.

• Logical cohesion - When logically categorized elements are put together

into a module, it is called logical cohesion.

• Temporal Cohesion - When elements of module are organized such that

they are processed at a similar point in time, it is called temporal

cohesion.

• Procedural cohesion - When elements of module are grouped together,

which are executed sequentially in order to perform a task, it is called

procedural cohesion.

• Communicational cohesion - When elements of module are grouped

together, which are executed sequentially and work on same data

(information), it is called communicational cohesion.

• Sequential cohesion - When elements of module are grouped because

the output of one element serves as input to another and so on, it is called

sequential cohesion.

Software Engineering : by Haridas Kataria

62

• Functional cohesion - It is considered to be the highest degree of

cohesion, and it is highly expected. Elements of module in functional

cohesion are grouped because they all contribute to a single well-defined

function. It can also be reused.

Coupling
Coupling is a measure that defines the level of inter-dependability among

modules of a program. It tells at what level the modules interfere and

interact with each other. The lower the coupling, the better the program.

There are five levels of coupling, namely -

• Content coupling - When a module can directly access or modify or refer

to the content of another module, it is called content level coupling.

• Common coupling- When multiple modules have read and write access

to some global data, it is called common or global coupling.

• Control coupling- Two modules are called control-coupled if one of them

decides the function of the other module or changes its flow of execution.

• Stamp coupling- When multiple modules share common data structure

and work on different part of it, it is called stamp coupling.

• Data coupling- Data coupling is when two modules interact with each

other by means of passing data (as parameter). If a module passes data

structure as parameter, then the receiving module should use all its

components.

Ideally, no coupling is considered to be the best.

Design Verification
The output of software design process is design documentation, pseudo

codes, detailed logic diagrams, process diagrams, and detailed description of

all functional or non-functional requirements.

The next phase, which is the implementation of software, depends on all

outputs mentioned above.

It is then becomes necessary to verify the output before proceeding to the

next phase. The early any mistake is detected, the better it is or it might not

Software Engineering : by Haridas Kataria

63

be detected until testing of the product. If the outputs of design phase are in

formal notation form, then their associated tools for verification should be

used otherwise a thorough design review can be used for verification and

validation.

By structured verification approach, reviewers can detect defects that might

be caused by overlooking some conditions. A good design review is

important for good software design, accuracy and quality.

Software Design Strategies

Software design is a process to conceptualize the software requirements into

software implementation. Software design takes the user requirements as

challenges and tries to find optimum solution. While the software is being

conceptualized, a plan is chalked out to find the best possible design for

implementing the intended solution.

There are multiple variants of software design. Let us study them briefly:

Structured Design
Structured design is a conceptualization of problem into several well-

organized elements of solution. It is basically concerned with the solution

design. Benefit of structured design is, it gives better understanding of how

the problem is being solved. Structured design also makes it simpler for

designer to concentrate on the problem more accurately.

Structured design is mostly based on ‘divide and conquer’ strategy where a

problem is broken into several small problems and each small problem is

individually solved until the whole problem is solved.

The small pieces of problem are solved by means of solution modules.

Structured design emphasis that these modules be well organized in order to

achieve precise solution.

Software Engineering : by Haridas Kataria

64

These modules are arranged in hierarchy. They communicate with each

other. A good structured design always follows some rules for

communication among multiple modules, namely -

Cohesion - grouping of all functionally related elements.

Coupling - communication between different modules.

A good structured design has high cohesion and low coupling arrangements.

Function Oriented Design
In function-oriented design, the system is comprised of many smaller sub-

systems known as functions. These functions are capable of performing

significant task in the system. The system is considered as top view of all

functions.

Function oriented design inherits some properties of structured design where

divide and conquer methodology is used.

This design mechanism divides the whole system into smaller functions,

which provides means of abstraction by concealing the information and their

operation.. These functional modules can share information among

themselves by means of information passing and using information available

globally.

Another characteristic of functions is that when a program calls a function,

the function changes the state of the program, which sometimes is not

acceptable by other modules. Function oriented design works well where the

system state does not matter and program/functions work on input rather

than on a state.

Design Process

• The whole system is seen as how data flows in the system by means of

data flow diagram.

• DFD depicts how functions changes data and state of entire system.

• The entire system is logically broken down into smaller units known as

functions on the basis of their operation in the system.

• Each function is then described at large.

Software Engineering : by Haridas Kataria

65

Object Oriented Design
Object oriented design works around the entities and their characteristics

instead of functions involved in the software system. This design strategies

focuses on entities and its characteristics. The whole concept of software

solution revolves around the engaged entities.

Let us see the important concepts of Object Oriented Design:

• Objects - All entities involved in the solution design are known as objects.

For example, person, banks, company and customers are treated as

objects. Every entity has some attributes associated to it and has some

methods to perform on the attributes.

• Classes - A class is a generalized description of an object. An object is an

instance of a class. Class defines all the attributes, which an object can

have and methods, which defines the functionality of the object.

In the solution design, attributes are stored as variables and

functionalities are defined by means of methods or procedures.

• Encapsulation - In OOD, the attributes (data variables) and methods

(operation on the data) are bundled together is called encapsulation.

Encapsulation not only bundles important information of an object

together, but also restricts access of the data and methods from the

outside world. This is called information hiding.

• Inheritance - OOD allows similar classes to stack up in hierarchical

manner where the lower or sub-classes can import, implement and re-use

allowed variables and methods from their immediate super classes. This

property of OOD is known as inheritance. This makes it easier to define

specific class and to create generalized classes from specific ones.

• Polymorphism - OOD languages provide a mechanism where methods

performing similar tasks but vary in arguments, can be assigned same

name. This is called polymorphism, which allows a single interface

performing tasks for different types. Depending upon how the function is

invoked, respective portion of the code gets executed.

Design Process

Software Engineering : by Haridas Kataria

66

Software design process can be perceived as series of well-defined steps.

Though it varies according to design approach (function oriented or object

oriented, yet It may have the following steps involved:

• A solution design is created from requirement or previous used system

and/or system sequence diagram.

• Objects are identified and grouped into classes on behalf of similarity in

attribute characteristics.

• Class hierarchy and relation among them is defined.

• Application framework is defined.

Software Design Approaches
Here are two generic approaches for software designing:

Top Down Design

We know that a system is composed of more than one sub-systems and it

contains a number of components. Further, these sub-systems and

components may have their on set of sub-system and components and

creates hierarchical structure in the system.

Top-down design takes the whole software system as one entity and then

decomposes it to achieve more than one sub-system or component based on

some characteristics. Each sub-system or component is then treated as a

system and decomposed further. This process keeps on running until the

lowest level of system in the top-down hierarchy is achieved.

Top-down design starts with a generalized model of system and keeps on

defining the more specific part of it. When all components are composed the

whole system comes into existence.

Top-down design is more suitable when the software solution needs to be

designed from scratch and specific details are unknown.

Bottom-up Design

The bottom up design model starts with most specific and basic components.

It proceeds with composing higher level of components by using basic or

lower level components. It keeps creating higher level components until the

Software Engineering : by Haridas Kataria

67

desired system is not evolved as one single component. With each higher

level, the amount of abstraction is increased.

Bottom-up strategy is more suitable when a system needs to be created

from some existing system, where the basic primitives can be used in the

newer system.

Both, top-down and bottom-up approaches are not practical individually.

Instead, a good combination of both is used.

Software Testing Overview

Software Testing is evaluation of the software against requirements

gathered from users and system specifications. Testing is conducted at the

phase level in software development life cycle or at module level in program

code. Software testing comprises of Validation and Verification.

Software Validation
Validation is process of examining whether or not the software satisfies the

user requirements. It is carried out at the end of the SDLC. If the software

matches requirements for which it was made, it is validated.

• Validation ensures the product under development is as per the user

requirements.

• Validation answers the question – "Are we developing the product which

attempts all that user needs from this software ?".

• Validation emphasizes on user requirements.

Software Verification
Verification is the process of confirming if the software is meeting the

business requirements, and is developed adhering to the proper

specifications and methodologies.

Software Engineering : by Haridas Kataria

68

• Verification ensures the product being developed is according to design

specifications.

• Verification answers the question– "Are we developing this product by

firmly following all design specifications ?"

• Verifications concentrates on the design and system specifications.

Target of the test are -

• Errors - These are actual coding mistakes made by developers. In

addition, there is a difference in output of software and desired output, is

considered as an error.

• Fault - When error exists fault occurs. A fault, also known as a bug, is a

result of an error which can cause system to fail.

• Failure - failure is said to be the inability of the system to perform the

desired task. Failure occurs when fault exists in the system.

Manual Vs Automated Testing
Testing can either be done manually or using an automated testing tool:

• Manual - This testing is performed without taking help of automated

testing tools. The software tester prepares test cases for different

sections and levels of the code, executes the tests and reports the result

to the manager.

Manual testing is time and resource consuming. The tester needs to

confirm whether or not right test cases are used. Major portion of testing

involves manual testing.

• Automated This testing is a testing procedure done with aid of

automated testing tools. The limitations with manual testing can be

overcome using automated test tools.

A test needs to check if a webpage can be opened in Internet Explorer. This

can be easily done with manual testing. But to check if the web-server can

take the load of 1 million users, it is quite impossible to test manually.

There are software and hardware tools which helps tester in conducting load

testing, stress testing, regression testing.

Software Engineering : by Haridas Kataria

69

Testing Approaches
Tests can be conducted based on two approaches –

• Functionality testing

• Implementation testing

When functionality is being tested without taking the actual implementation

in concern it is known as black-box testing. The other side is known as

white-box testing where not only functionality is tested but the way it is

implemented is also analyzed.

Exhaustive tests are the best-desired method for a perfect testing. Every

single possible value in the range of the input and output values is tested. It

is not possible to test each and every value in real world scenario if the

range of values is large.

Black-box testing

It is carried out to test functionality of the program. It is also called

‘Behavioral’ testing. The tester in this case, has a set of input values and

respective desired results. On providing input, if the output matches with the

desired results, the program is tested ‘ok’, and problematic otherwise.

In this testing method, the design and structure of the code are not known

to the tester, and testing engineers and end users conduct this test on the

software.

Black-box testing techniques:

• Equivalence class - The input is divided into similar classes. If one

element of a class passes the test, it is assumed that all the class is

passed.

Software Engineering : by Haridas Kataria

70

• Boundary values - The input is divided into higher and lower end values.

If these values pass the test, it is assumed that all values in between may

pass too.

• Cause-effect graphing - In both previous methods, only one input value

at a time is tested. Cause (input) – Effect (output) is a testing technique

where combinations of input values are tested in a systematic way.

• Pair-wise Testing - The behavior of software depends on multiple

parameters. In pairwise testing, the multiple parameters are tested pair-

wise for their different values.

• State-based testing - The system changes state on provision of input.

These systems are tested based on their states and input.

White-box testing

It is conducted to test program and its implementation, in order to improve

code efficiency or structure. It is also known as ‘Structural’ testing.

In this testing method, the design and structure of the code are known to

the tester. Programmers of the code conduct this test on the code.

The below are some White-box testing techniques:

• Control-flow testing - The purpose of the control-flow testing to set up

test cases which covers all statements and branch conditions. The branch

conditions are tested for both being true and false, so that all statements

can be covered.

• Data-flow testing - This testing technique emphasis to cover all the data

variables included in the program. It tests where the variables were

declared and defined and where they were used or changed.

Testing Levels

Software Engineering : by Haridas Kataria

71

Testing itself may be defined at various levels of SDLC. The testing process

runs parallel to software development. Before jumping on the next stage, a

stage is tested, validated and verified.

Testing separately is done just to make sure that there are no hidden bugs

or issues left in the software. Software is tested on various levels -

Unit Testing

While coding, the programmer performs some tests on that unit of program

to know if it is error free. Testing is performed under white-box testing

approach. Unit testing helps developers decide that individual units of the

program are working as per requirement and are error free.

Integration Testing

Even if the units of software are working fine individually, there is a need to

find out if the units if integrated together would also work without errors.

For example, argument passing and data updation etc.

System Testing

The software is compiled as product and then it is tested as a whole. This

can be accomplished using one or more of the following tests:

• Functionality testing - Tests all functionalities of the software against

the requirement.

• Performance testing - This test proves how efficient the software is. It

tests the effectiveness and average time taken by the software to do

desired task. Performance testing is done by means of load testing and

stress testing where the software is put under high user and data load

under various environment conditions.

• Security & Portability - These tests are done when the software is

meant to work on various platforms and accessed by number of persons.

Acceptance Testing

When the software is ready to hand over to the customer it has to go

through last phase of testing where it is tested for user-interaction and

response. This is important because even if the software matches all user

Software Engineering : by Haridas Kataria

72

requirements and if user does not like the way it appears or works, it may

be rejected.

• Alpha testing - The team of developer themselves perform alpha testing

by using the system as if it is being used in work environment. They try

to find out how user would react to some action in software and how the

system should respond to inputs.

• Beta testing - After the software is tested internally, it is handed over to

the users to use it under their production environment only for testing

purpose. This is not as yet the delivered product. Developers expect that

users at this stage will bring minute problems, which were skipped to

attend.

Regression Testing

Whenever a software product is updated with new code, feature or

functionality, it is tested thoroughly to detect if there is any negative impact

of the added code. This is known as regression testing.

Testing Documentation
Testing documents are prepared at different stages -

Before Testing

Testing starts with test cases generation. Following documents are needed

for reference –

• SRS document - Functional Requirements document

• Test Policy document - This describes how far testing should take place

before releasing the product.

• Test Strategy document - This mentions detail aspects of test team,

responsibility matrix and rights/responsibility of test manager and test

engineer.

• Traceability Matrix document - This is SDLC document, which is

related to requirement gathering process. As new requirements come,

they are added to this matrix. These matrices help testers know the

source of requirement. They can be traced forward and backward.

Software Engineering : by Haridas Kataria

73

While Being Tested

The following documents may be required while testing is started and is

being done:

• Test Case document - This document contains list of tests required to be

conducted. It includes Unit test plan, Integration test plan, System test

plan and Acceptance test plan.

• Test description - This document is a detailed description of all test

cases and procedures to execute them.

• Test case report - This document contains test case report as a result of

the test.

• Test logs - This document contains test logs for every test case report.

After Testing

The following documents may be generated after testing :

• Test summary - This test summary is collective analysis of all test

reports and logs. It summarizes and concludes if the software is ready to

be launched. The software is released under version control system if it is

ready to launch.

Testing vs. Quality Control, Quality Assurance

and Audit
We need to understand that software testing is different from software

quality assurance, software quality control and software auditing.

• Software quality assurance - These are software development process

monitoring means, by which it is assured that all the measures are taken

as per the standards of organization. This monitoring is done to make

sure that proper software development methods were followed.

• Software quality control - This is a system to maintain the quality of

software product. It may include functional and non-functional aspects of

software product, which enhance the goodwill of the organization. This

system makes sure that the customer is receiving quality product for their

requirement and the product certified as ‘fit for use’.

Software Engineering : by Haridas Kataria

74

• Software audit - This is a review of procedure used by the organization

to develop the software. A team of auditors, independent of development

team examines the software process, procedure, requirements and other

aspects of SDLC. The purpose of software audit is to check that software

and its development process, both conform standards, rules and

regulations.

Software User Interface Design

User interface is the front-end application view to which user interacts in

order to use the software. User can manipulate and control the software as

well as hardware by means of user interface. Today, user interface is found

at almost every place where digital technology exists, right from computers,

mobile phones, cars, music players, airplanes, ships etc.

User interface is part of software and is designed such a way that it is

expected to provide the user insight of the software. UI provides

fundamental platform for human-computer interaction.

UI can be graphical, text-based, audio-video based, depending upon the

underlying hardware and software combination. UI can be hardware or

software or a combination of both.

The software becomes more popular if its user interface is:

• Attractive

• Simple to use

• Responsive in short time

• Clear to understand

• Consistent on all interfacing screens

UI is broadly divided into two categories:

• Command Line Interface

Software Engineering : by Haridas Kataria

75

• Graphical User Interface

Command Line Interface (CLI)
CLI has been a great tool of interaction with computers until the video

display monitors came into existence. CLI is first choice of many technical

users and programmers. CLI is minimum interface a software can provide to

its users.

CLI provides a command prompt, the place where the user types the

command and feeds to the system. The user needs to remember the syntax

of command and its use. Earlier CLI were not programmed to handle the

user errors effectively.

A command is a text-based reference to set of instructions, which are

expected to be executed by the system. There are methods like macros,

scripts that make it easy for the user to operate.

CLI uses less amount of computer resource as compared to GUI.

CLI Elements

A text-based command line interface can have the following elements:

Software Engineering : by Haridas Kataria

76

• Command Prompt - It is text-based notifier that is mostly shows the

context in which the user is working. It is generated by the software

system.

• Cursor - It is a small horizontal line or a vertical bar of the height of line,

to represent position of character while typing. Cursor is mostly found in

blinking state. It moves as the user writes or deletes something.

• Command - A command is an executable instruction. It may have one or

more parameters. Output on command execution is shown inline on the

screen. When output is produced, command prompt is displayed on the

next line.

Graphical User Interface
Graphical User Interface provides the user graphical means to interact with

the system. GUI can be combination of both hardware and software. Using

GUI, user interprets the software.

Typically, GUI is more resource consuming than that of CLI. With advancing

technology, the programmers and designers create complex GUI designs

that work with more efficiency, accuracy and speed.

GUI Elements

GUI provides a set of components to interact with software or hardware.

Every graphical component provides a way to work with the system. A GUI

system has following elements such as:

Software Engineering : by Haridas Kataria

77

• Window - An area where contents of application are displayed. Contents

in a window can be displayed in the form of icons or lists, if the window

represents file structure. It is easier for a user to navigate in the file

system in an exploring window. Windows can be minimized, resized or

maximized to the size of screen. They can be moved anywhere on the

screen. A window may contain another window of the same application,

called child window.

• Tabs - If an application allows executing multiple instances of itself, they

appear on the screen as separate windows. Tabbed Document

Interface has come up to open multiple documents in the same window.

This interface also helps in viewing preference panel in application. All

modern web-browsers use this feature.

• Menu - Menu is an array of standard commands, grouped together and

placed at a visible place (usually top) inside the application window. The

menu can be programmed to appear or hide on mouse clicks.

• Icon - An icon is small picture representing an associated application.

When these icons are clicked or double clicked, the application window is

opened. Icon displays application and programs installed on a system in

the form of small pictures.

• Cursor - Interacting devices such as mouse, touch pad, digital pen are

represented in GUI as cursors. On screen cursor follows the instructions

Software Engineering : by Haridas Kataria

78

from hardware in almost real-time. Cursors are also named pointers in

GUI systems. They are used to select menus, windows and other

application features.

Application specific GUI components

A GUI of an application contains one or more of the listed GUI elements:

• Application Window - Most application windows uses the constructs

supplied by operating systems but many use their own customer created

windows to contain the contents of application.

• Dialogue Box - It is a child window that contains message for the user

and request for some action to be taken. For Example: Application

generate a dialogue to get confirmation from user to delete a file.

• Text-Box - Provides an area for user to type and enter text-based data.

• Buttons - They imitate real life buttons and are used to submit inputs to

the software.

Software Engineering : by Haridas Kataria

79

• Radio-button - Displays available options for selection. Only one can be

selected among all offered.

• Check-box - Functions similar to list-box. When an option is selected, the

box is marked as checked. Multiple options represented by check boxes

can be selected.

• List-box - Provides list of available items for selection. More than one

item can be selected.

Other impressive GUI components are:

• Sliders

• Combo-box

• Data-grid

• Drop-down list

User Interface Design Activities
There are a number of activities performed for designing user interface. The

process of GUI design and implementation is alike SDLC. Any model can be

used for GUI implementation among Waterfall, Iterative or Spiral Model.

A model used for GUI design and development should fulfill these GUI

specific steps.

Software Engineering : by Haridas Kataria

80

• GUI Requirement Gathering - The designers may like to have list of all

functional and non-functional requirements of GUI. This can be taken

from user and their existing software solution.

• User Analysis - The designer studies who is going to use the software

GUI. The target audience matters as the design details change according

to the knowledge and competency level of the user. If user is technical

savvy, advanced and complex GUI can be incorporated. For a novice user,

more information is included on how-to of software.

• Task Analysis - Designers have to analyze what task is to be done by the

software solution. Here in GUI, it does not matter how it will be done.

Tasks can be represented in hierarchical manner taking one major task

and dividing it further into smaller sub-tasks. Tasks provide goals for GUI

presentation. Flow of information among sub-tasks determines the flow of

GUI contents in the software.

• GUI Design & implementation - Designers after having information

about requirements, tasks and user environment, design the GUI and

implements into code and embed the GUI with working or dummy

software in the background. It is then self-tested by the developers.

Software Engineering : by Haridas Kataria

81

• Testing - GUI testing can be done in various ways. Organization can have

in-house inspection, direct involvement of users and release of beta

version are few of them. Testing may include usability, compatibility, user

acceptance etc.

GUI Implementation Tools
There are several tools available using which the designers can create entire

GUI on a mouse click. Some tools can be embedded into the software

environment (IDE).

GUI implementation tools provide powerful array of GUI controls. For

software customization, designers can change the code accordingly.

There are different segments of GUI tools according to their different use

and platform.

Example

Mobile GUI, Computer GUI, Touch-Screen GUI etc. Here is a list of few tools

which come handy to build GUI:

• FLUID

• AppInventor (Android)

• LucidChart

• Wavemaker

• Visual Studio

User Interface Golden rules
The following rules are mentioned to be the golden rules for GUI design,

described by Shneiderman and Plaisant in their book (Designing the User

Interface).

• Strive for consistency - Consistent sequences of actions should be

required in similar situations. Identical terminology should be used in

prompts, menus, and help screens. Consistent commands should be

employed throughout.

• Enable frequent users to use short-cuts - The user’s desire to reduce

the number of interactions increases with the frequency of use.

Software Engineering : by Haridas Kataria

82

Abbreviations, function keys, hidden commands, and macro facilities are

very helpful to an expert user.

• Offer informative feedback - For every operator action, there should be

some system feedback. For frequent and minor actions, the response

must be modest, while for infrequent and major actions, the response

must be more substantial.

• Design dialog to yield closure - Sequences of actions should be

organized into groups with a beginning, middle, and end. The informative

feedback at the completion of a group of actions gives the operators the

satisfaction of accomplishment, a sense of relief, the signal to drop

contingency plans and options from their minds, and this indicates that

the way ahead is clear to prepare for the next group of actions.

• Offer simple error handling - As much as possible, design the system

so the user will not make a serious error. If an error is made, the system

should be able to detect it and offer simple, comprehensible mechanisms

for handling the error.

• Permit easy reversal of actions - This feature relieves anxiety, since

the user knows that errors can be undone. Easy reversal of actions

encourages exploration of unfamiliar options. The units of reversibility

may be a single action, a data entry, or a complete group of actions.

• Support internal locus of control - Experienced operators strongly

desire the sense that they are in charge of the system and that the

system responds to their actions. Design the system to make users the

initiators of actions rather than the responders.

• Reduce short-term memory load - The limitation of human information

processing in short-term memory requires the displays to be kept simple,

multiple page displays be consolidated, window-motion frequency be

reduced, and sufficient training time be allotted for codes, mnemonics,

and sequences of actions.

Software Engineering : by Haridas Kataria

83

Software Maintenance Overview

Software maintenance is widely accepted part of SDLC now a days. It stands

for all the modifications and updations done after the delivery of software

product. There are number of reasons, why modifications are required, some

of them are briefly mentioned below:

• Market Conditions - Policies, which changes over the time, such as

taxation and newly introduced constraints like, how to maintain

bookkeeping, may trigger need for modification.

• Client Requirements - Over the time, customer may ask for new

features or functions in the software.

• Host Modifications - If any of the hardware and/or platform (such as

operating system) of the target host changes, software changes are

needed to keep adaptability.

• Organization Changes - If there is any business level change at client

end, such as reduction of organization strength, acquiring another

company, organization venturing into new business, need to modify in the

original software may arise.

Types of maintenance
In a software lifetime, type of maintenance may vary based on its nature. It

may be just a routine maintenance tasks as some bug discovered by some

user or it may be a large event in itself based on maintenance size or

nature. Following are some types of maintenance based on their

characteristics:

• Corrective Maintenance - This includes modifications and updations

done in order to correct or fix problems, which are either discovered by

user or concluded by user error reports.

• Adaptive Maintenance - This includes modifications and updations

applied to keep the software product up-to date and tuned to the ever

changing world of technology and business environment.

Software Engineering : by Haridas Kataria

84

• Perfective Maintenance - This includes modifications and updates done

in order to keep the software usable over long period of time. It includes

new features, new user requirements for refining the software and

improve its reliability and performance.

• Preventive Maintenance - This includes modifications and updations to

prevent future problems of the software. It aims to attend problems,

which are not significant at this moment but may cause serious issues in

future.

Cost of Maintenance
Reports suggest that the cost of maintenance is high. A study on estimating

software maintenance found that the cost of maintenance is as high as 67%

of the cost of entire software process cycle.

On an average, the cost of software maintenance is more than 50% of all

SDLC phases. There are various factors, which trigger maintenance cost go

high, such as:

Real-world factors affecting Maintenance Cost

• The standard age of any software is considered up to 10 to 15 years.

Software Engineering : by Haridas Kataria

85

• Older softwares, which were meant to work on slow machines with less

memory and storage capacity cannot keep themselves challenging against

newly coming enhanced softwares on modern hardware.

• As technology advances, it becomes costly to maintain old software.

• Most maintenance engineers are newbie and use trial and error method to

rectify problem.

• Often, changes made can easily hurt the original structure of the software,

making it hard for any subsequent changes.

• Changes are often left undocumented which may cause more conflicts in

future.

Software-end factors affecting Maintenance Cost

• Structure of Software Program

• Programming Language

• Dependence on external environment

• Staff reliability and availability

Maintenance Activities
IEEE provides a framework for sequential maintenance process activities. It

can be used in iterative manner and can be extended so that customized

items and processes can be included.

Software Engineering : by Haridas Kataria

86

These activities go hand-in-hand with each of the following phase:

• Identification & Tracing - It involves activities pertaining to

identification of requirement of modification or maintenance. It is

generated by user or system may itself report via logs or error

messages.Here, the maintenance type is classified also.

• Analysis - The modification is analyzed for its impact on the system

including safety and security implications. If probable impact is severe,

alternative solution is looked for. A set of required modifications is then

materialized into requirement specifications. The cost of

modification/maintenance is analyzed and estimation is concluded.

• Design - New modules, which need to be replaced or modified, are

designed against requirement specifications set in the previous stage.

Test cases are created for validation and verification.

• Implementation - The new modules are coded with the help of

structured design created in the design step.Every programmer is

expected to do unit testing in parallel.

• System Testing - Integration testing is done among newly created

modules. Integration testing is also carried out between new modules and

Software Engineering : by Haridas Kataria

87

the system. Finally the system is tested as a whole, following regressive

testing procedures.

• Acceptance Testing - After testing the system internally, it is tested for

acceptance with the help of users. If at this state, user complaints some

issues they are addressed or noted to address in next iteration.

• Delivery - After acceptance test, the system is deployed all over the

organization either by small update package or fresh installation of the

system. The final testing takes place at client end after the software is

delivered.

Training facility is provided if required, in addition to the hard copy of

user manual.

• Maintenance management - Configuration management is an essential

part of system maintenance. It is aided with version control tools to

control versions, semi-version or patch management.

Software Re-engineering
When we need to update the software to keep it to the current market,

without impacting its functionality, it is called software re-engineering. It is a

thorough process where the design of software is changed and programs are

re-written.

Legacy software cannot keep tuning with the latest technology available in

the market. As the hardware become obsolete, updating of software

becomes a headache. Even if software grows old with time, its functionality

does not.

For example, initially Unix was developed in assembly language. When

language C came into existence, Unix was re-engineered in C, because

working in assembly language was difficult.

Other than this, sometimes programmers notice that few parts of software

need more maintenance than others and they also need re-engineering.

Software Engineering : by Haridas Kataria

88

Re-Engineering Process

• Decide what to re-engineer. Is it whole software or a part of it?

• Perform Reverse Engineering, in order to obtain specifications of existing

software.

• Restructure Program if required. For example, changing function-

oriented programs into object-oriented programs.

• Re-structure data as required.

• Apply Forward engineering concepts in order to get re-engineered

software.

There are few important terms used in Software re-engineering

Reverse Engineering

It is a process to achieve system specification by thoroughly analyzing,

understanding the existing system. This process can be seen as reverse

SDLC model, i.e. we try to get higher abstraction level by analyzing lower

abstraction levels.

An existing system is previously implemented design, about which we know

nothing. Designers then do reverse engineering by looking at the code and

try to get the design. With design in hand, they try to conclude the

specifications. Thus, going in reverse from code to system specification.

Software Engineering : by Haridas Kataria

89

Program Restructuring

It is a process to re-structure and re-construct the existing software. It is all

about re-arranging the source code, either in same programming language

or from one programming language to a different one. Restructuring can

have either source code-restructuring and data-restructuring or both.

Re-structuring does not impact the functionality of the software but enhance

reliability and maintainability. Program components, which cause errors very

frequently can be changed, or updated with re-structuring.

The dependability of software on obsolete hardware platform can be

removed via re-structuring.

Forward Engineering

Forward engineering is a process of obtaining desired software from the

specifications in hand which were brought down by means of reverse

engineering. It assumes that there was some software engineering already

done in the past.

Forward engineering is same as software engineering process with only one

difference – it is carried out always after reverse engineering.

Component reusability
A component is a part of software program code, which executes an

independent task in the system. It can be a small module or sub-system

itself.

Example

The login procedures used on the web can be considered as components,

printing system in software can be seen as a component of the software.

Software Engineering : by Haridas Kataria

90

Components have high cohesion of functionality and lower rate of coupling,

i.e. they work independently and can perform tasks without depending on

other modules.

In OOP, the objects are designed are very specific to their concern and have

fewer chances to be used in some other software.

In modular programming, the modules are coded to perform specific tasks

which can be used across number of other software programs.

There is a whole new vertical, which is based on re-use of software

component, and is known as Component Based Software Engineering

(CBSE).

Re-use can be done at various levels

• Application level - Where an entire application is used as sub-system of

new software.

• Component level - Where sub-system of an application is used.

• Modules level - Where functional modules are re-used.

Software components provide interfaces, which can be used to establish

communication among different components.

Reuse Process

Two kinds of method can be adopted: either by keeping requirements same

and adjusting components or by keeping components same and modifying

requirements.

Software Engineering : by Haridas Kataria

91

• Requirement Specification - The functional and non-functional

requirements are specified, which a software product must comply to,

with the help of existing system, user input or both.

• Design - This is also a standard SDLC process step, where requirements

are defined in terms of software parlance. Basic architecture of system as

a whole and its sub-systems are created.

• Specify Components - By studying the software design, the designers

segregate the entire system into smaller components or sub-systems.

One complete software design turns into a collection of a huge set of

components working together.

• Search Suitable Components - The software component repository is

referred by designers to search for the matching component, on the basis

of functionality and intended software requirements..

• Incorporate Components - All matched components are packed

together to shape them as complete software.

Software Implementation

Software Engineering : by Haridas Kataria

92

In this chapter, we will study about programming methods, documentation

and challenges in software implementation.

Structured Programming
In the process of coding, the lines of code keep multiplying, thus, size of the

software increases. Gradually, it becomes next to impossible to remember

the flow of program. If one forgets how software and its underlying

programs, files, procedures are constructed it then becomes very difficult to

share, debug and modify the program. The solution to this is structured

programming. It encourages the developer to use subroutines and loops

instead of using simple jumps in the code, thereby bringing clarity in the

code and improving its efficiency Structured programming also helps

programmer to reduce coding time and organize code properly.

Structured programming states how the program shall be coded. Structured

programming uses three main concepts:

• Top-down analysis - A software is always made to perform some

rational work. This rational work is known as problem in the software

parlance. Thus it is very important that we understand how to solve the

problem. Under top-down analysis, the problem is broken down into small

pieces where each one has some significance. Each problem is individually

solved and steps are clearly stated about how to solve the problem.

• Modular Programming - While programming, the code is broken down

into smaller group of instructions. These groups are known as modules,

subprograms or subroutines. Modular programming based on the

understanding of top-down analysis. It discourages jumps using ‘goto’

statements in the program, which often makes the program flow non-

traceable. Jumps are prohibited and modular format is encouraged in

structured programming.

• Structured Coding - In reference with top-down analysis, structured

coding sub-divides the modules into further smaller units of code in the

order of their execution. Structured programming uses control structure,

Software Engineering : by Haridas Kataria

93

which controls the flow of the program, whereas structured coding uses

control structure to organize its instructions in definable patterns.

Functional Programming
Functional programming is style of programming language, which uses the

concepts of mathematical functions. A function in mathematics should

always produce the same result on receiving the same argument. In

procedural languages, the flow of the program runs through procedures, i.e.

the control of program is transferred to the called procedure. While control

flow is transferring from one procedure to another, the program changes its

state.

In procedural programming, it is possible for a procedure to produce

different results when it is called with the same argument, as the program

itself can be in different state while calling it. This is a property as well as a

drawback of procedural programming, in which the sequence or timing of

the procedure execution becomes important.

Functional programming provides means of computation as mathematical

functions, which produces results irrespective of program state. This makes

it possible to predict the behavior of the program.

Functional programming uses the following concepts:

• First class and High-order functions - These functions have capability

to accept another function as argument or they return other functions as

results.

• Pure functions - These functions do not include destructive updates, that

is, they do not affect any I/O or memory and if they are not in use, they

can easily be removed without hampering the rest of the program.

• Recursion - Recursion is a programming technique where a function calls

itself and repeats the program code in it unless some pre-defined

condition matches. Recursion is the way of creating loops in functional

programming.

• Strict evaluation - It is a method of evaluating the expression passed to

a function as an argument. Functional programming has two types of

Software Engineering : by Haridas Kataria

94

evaluation methods, strict (eager) or non-strict (lazy). Strict evaluation

always evaluates the expression before invoking the function. Non-strict

evaluation does not evaluate the expression unless it is needed.

• λ-calculus - Most functional programming languages use λ-calculus as

their type systems. λ-expressions are executed by evaluating them as

they occur.

Common Lisp, Scala, Haskell, Erlang and F# are some examples of

functional programming languages.

Programming style
Programming style is set of coding rules followed by all the programmers to

write the code. When multiple programmers work on the same software

project, they frequently need to work with the program code written by

some other developer. This becomes tedious or at times impossible, if all

developers do not follow some standard programming style to code the

program.

An appropriate programming style includes using function and variable

names relevant to the intended task, using well-placed indentation,

commenting code for the convenience of reader and overall presentation of

code. This makes the program code readable and understandable by all,

which in turn makes debugging and error solving easier. Also, proper coding

style helps ease the documentation and updation.

Coding Guidelines

Practice of coding style varies with organizations, operating systems and

language of coding itself.

The following coding elements may be defined under coding guidelines of an

organization:

• Naming conventions - This section defines how to name functions,

variables, constants and global variables.

• Indenting - This is the space left at the beginning of line, usually 2-8

whitespace or single tab.

• Whitespace - It is generally omitted at the end of line.

Software Engineering : by Haridas Kataria

95

• Operators - Defines the rules of writing mathematical, assignment and

logical operators. For example, assignment operator ‘=’ should have

space before and after it, as in “x = 2”.

• Control Structures - The rules of writing if-then-else, case-switch, while-

until and for control flow statements solely and in nested fashion.

• Line length and wrapping - Defines how many characters should be

there in one line, mostly a line is 80 characters long. Wrapping defines

how a line should be wrapped, if is too long.

• Functions - This defines how functions should be declared and invoked,

with and without parameters.

• Variables - This mentions how variables of different data types are

declared and defined.

• Comments - This is one of the important coding components, as the

comments included in the code describe what the code actually does and

all other associated descriptions. This section also helps creating help

documentations for other developers.

Software Documentation
Software documentation is an important part of software process. A well

written document provides a great tool and means of information repository

necessary to know about software process. Software documentation also

provides information about how to use the product.

A well-maintained documentation should involve the following documents:

• Requirement documentation - This documentation works as key tool

for software designer, developer and the test team to carry out their

respective tasks. This document contains all the functional, non-functional

and behavioral description of the intended software.

Source of this document can be previously stored data about the

software, already running software at the client’s end, client’s interview,

questionnaires and research. Generally it is stored in the form of

spreadsheet or word processing document with the high-end software

management team.

Software Engineering : by Haridas Kataria

96

This documentation works as foundation for the software to be developed

and is majorly used in verification and validation phases. Most test-cases

are built directly from requirement documentation.

• Software Design documentation - These documentations contain all

the necessary information, which are needed to build the software. It

contains: (a) High-level software architecture, (b) Software design

details, (c) Data flow diagrams, (d) Database design

These documents work as repository for developers to implement the

software. Though these documents do not give any details on how to

code the program, they give all necessary information that is required for

coding and implementation.

• Technical documentation - These documentations are maintained by

the developers and actual coders. These documents, as a whole,

represent information about the code. While writing the code, the

programmers also mention objective of the code, who wrote it, where will

it be required, what it does and how it does, what other resources the

code uses, etc.

The technical documentation increases the understanding between

various programmers working on the same code. It enhances re-use

capability of the code. It makes debugging easy and traceable.

There are various automated tools available and some comes with the

programming language itself. For example java comes JavaDoc tool to

generate technical documentation of code.

• User documentation - This documentation is different from all the above

explained. All previous documentations are maintained to provide

information about the software and its development process. But user

documentation explains how the software product should work and how it

should be used to get the desired results.

These documentations may include, software installation procedures,

how-to guides, user-guides, uninstallation method and special references

to get more information like license updation etc.

Software Engineering : by Haridas Kataria

97

Software Implementation Challenges
There are some challenges faced by the development team while

implementing the software. Some of them are mentioned below:

• Code-reuse - Programming interfaces of present-day languages are very

sophisticated and are equipped huge library functions. Still, to bring the

cost down of end product, the organization management prefers to re-use

the code, which was created earlier for some other software. There are

huge issues faced by programmers for compatibility checks and deciding

how much code to re-use.

• Version Management - Every time a new software is issued to the

customer, developers have to maintain version and configuration related

documentation. This documentation needs to be highly accurate and

available on time.

• Target-Host - The software program, which is being developed in the

organization, needs to be designed for host machines at the customers

end. But at times, it is impossible to design a software that works on the

target machines.

