
Computer Programming using Python: by Haridas Kataria

1

Python – Introduction

Python is a high-level, interpreted, interactive and object-oriented scripting

language. Python is designed to be highly readable. It uses English

keywords frequently where as other languages use punctuation, and it has

fewer syntactical constructions than other languages.

• Python is Interpreted − Python is processed at runtime by the interpreter.

You do not need to compile your program before executing it. This is similar to

PERL and PHP.

• Python is Interactive − You can actually sit at a Python prompt and interact

with the interpreter directly to write your programs.

• Python is Object-Oriented − Python supports Object-Oriented style or

technique of programming that encapsulates code within objects.

• Python is a Beginner's Language − Python is a great language for the

beginner-level programmers and supports the development of a wide range of

applications from simple text processing to WWW browsers to games.

History of Python
Python was developed by Guido van Rossum in the late eighties and early

nineties at the National Research Institute for Mathematics and Computer

Science in the Netherlands.

Python is derived from many other languages, including ABC, Modula-3, C,

C++, Algol-68, SmallTalk, and Unix shell and other scripting languages.

Python is copyrighted. Like Perl, Python source code is now available under

the GNU General Public License (GPL).

Python is now maintained by a core development team at the institute,

although Guido van Rossum still holds a vital role in directing its progress.

Python Features
Python's features include −

• Easy-to-learn − Python has few keywords, simple structure, and a clearly

defined syntax. This allows the student to pick up the language quickly.

• Easy-to-read − Python code is more clearly defined and visible to the eyes.

Computer Programming using Python: by Haridas Kataria

2

• Easy-to-maintain − Python's source code is fairly easy-to-maintain.

• A broad standard library − Python's bulk of the library is very portable and

cross-platform compatible on UNIX, Windows, and Macintosh.

• Interactive Mode − Python has support for an interactive mode which allows

interactive testing and debugging of snippets of code.

• Portable − Python can run on a wide variety of hardware platforms and has the

same interface on all platforms.

• Extendable − You can add low-level modules to the Python interpreter. These

modules enable programmers to add to or customize their tools to be more

efficient.

• Databases − Python provides interfaces to all major commercial databases.

• GUI Programming − Python supports GUI applications that can be created and

ported to many system calls, libraries and windows systems, such as Windows

MFC, Macintosh, and the X Window system of Unix.

• Scalable − Python provides a better structure and support for large programs

than shell scripting.

Apart from the above-mentioned features, Python has a big list of good

features, few are listed below −

• It supports functional and structured programming methods as well as OOP.

• It can be used as a scripting language or can be compiled to byte-code for

building large applications.

• It provides very high-level dynamic data types and supports dynamic type

checking.

• It supports automatic garbage collection.

• It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

Python- Variables

Variables are nothing but reserved memory locations to store values. This

means that when you create a variable you reserve some space in memory.

Computer Programming using Python: by Haridas Kataria

3

Based on the data type of a variable, the interpreter allocates memory and

decides what can be stored in the reserved memory. Therefore, by

assigning different data types to variables, you can store integers, decimals

or characters in these variables.

Assigning Values to Variables
Python variables do not need explicit declaration to reserve memory space.

The declaration happens automatically when you assign a value to a

variable. The equal sign (=) is used to assign values to variables.

The operand to the left of the = operator is the name of the variable and

the operand to the right of the = operator is the value stored in the

variable. For example −

 Live Demo

#!/usr/bin/python

counter = 100 # An integer assignment

miles = 1000.0 # A floating point

name = "John" # A string

print counter

print miles

print name

Here, 100, 1000.0 and "John" are the values assigned to counter, miles,

and name variables, respectively. This produces the following result −

100
1000.0
John

Multiple Assignment
Python allows you to assign a single value to several variables

simultaneously. For example −

a = b = c = 1

http://tpcg.io/Eh9FoM

Computer Programming using Python: by Haridas Kataria

4

Here, an integer object is created with the value 1, and all three variables

are assigned to the same memory location. You can also assign multiple

objects to multiple variables. For example −

a,b,c = 1,2,"john"

Here, two integer objects with values 1 and 2 are assigned to variables a

and b respectively, and one string object with the value "john" is assigned

to the variable c.

Standard Data Types
The data stored in memory can be of many types. For example, a person's

age is stored as a numeric value and his or her address is stored as

alphanumeric characters. Python has various standard data types that are

used to define the operations possible on them and the storage method for

each of them.

Python has five standard data types −

• Numbers

• String

• List

• Tuple

• Dictionary

Python Numbers
Number data types store numeric values. Number objects are created when

you assign a value to them. For example −

var1 = 1
var2 = 10

You can also delete the reference to a number object by using the del

statement. The syntax of the del statement is −

del var1[,var2[,var3[....,varN]]]]

You can delete a single object or multiple objects by using the del

statement. For example −

del var
del var_a, var_b

Computer Programming using Python: by Haridas Kataria

5

Python supports four different numerical types −

• int (signed integers)

• long (long integers, they can also be represented in octal and hexadecimal)

• float (floating point real values)

• complex (complex numbers)

Examples

Here are some examples of numbers −

int long float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45.j

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

• Python allows you to use a lowercase l with long, but it is recommended that

you use only an uppercase L to avoid confusion with the number 1. Python

displays long integers with an uppercase L.

• A complex number consists of an ordered pair of real floating-point numbers

denoted by x + yj, where x and y are the real numbers and j is the imaginary

unit.

Python Strings

Computer Programming using Python: by Haridas Kataria

6

Strings in Python are identified as a contiguous set of characters

represented in the quotation marks. Python allows for either pairs of single

or double quotes. Subsets of strings can be taken using the slice operator ([

] and [:]) with indexes starting at 0 in the beginning of the string and

working their way from -1 at the end.

The plus (+) sign is the string concatenation operator and the asterisk (*) is

the repetition operator. For example −

 Live Demo

#!/usr/bin/python

str = 'Hello World!'

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character

print str * 2 # Prints string two times

print str + "TEST" # Prints concatenated string

This will produce the following result −

Hello World!
H
llo
llo World!
Hello World!Hello World!
Hello World!TEST

Python Lists
Lists are the most versatile of Python's compound data types. A list contains

items separated by commas and enclosed within square brackets ([]). To

some extent, lists are similar to arrays in C. One difference between them is

that all the items belonging to a list can be of different data type.

The values stored in a list can be accessed using the slice operator ([] and

[:]) with indexes starting at 0 in the beginning of the list and working their

http://tpcg.io/PsSj6c

Computer Programming using Python: by Haridas Kataria

7

way to end -1. The plus (+) sign is the list concatenation operator, and the

asterisk (*) is the repetition operator. For example −

#!/usr/bin/python

list = ['abcd', 786 , 2.23, 'john', 70.2]

tinylist = [123, 'john']

print list # Prints complete list

print list[0] # Prints first element of the list

print list[1:3] # Prints elements starting from 2nd till 3rd

print list[2:] # Prints elements starting from 3rd element

print tinylist * 2 # Prints list two times

print list + tinylist # Prints concatenated lists

This produce the following result −

['abcd', 786, 2.23, 'john', 70.2]
abcd
[786, 2.23]
[2.23, 'john', 70.2]
[123, 'john', 123, 'john']
['abcd', 786, 2.23, 'john', 70.2, 123, 'john']

Python Tuples
A tuple is another sequence data type that is similar to the list. A tuple

consists of a number of values separated by commas. Unlike lists, however,

tuples are enclosed within parentheses.

The main differences between lists and tuples are: Lists are enclosed in

brackets ([]) and their elements and size can be changed, while tuples

are enclosed in parentheses (()) and cannot be updated. Tuples can be

thought of as read-only lists. For example −

 Live Demo

#!/usr/bin/python

http://tpcg.io/XYBk9k

Computer Programming using Python: by Haridas Kataria

8

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

tinytuple = (123, 'john')

print tuple # Prints complete list

print tuple[0] # Prints first element of the list

print tuple[1:3] # Prints elements starting from 2nd till 3rd

print tuple[2:] # Prints elements starting from 3rd element

print tinytuple * 2 # Prints list two times

print tuple + tinytuple # Prints concatenated lists

This produce the following result −

('abcd', 786, 2.23, 'john', 70.2)
abcd
(786, 2.23)
(2.23, 'john', 70.2)
(123, 'john', 123, 'john')
('abcd', 786, 2.23, 'john', 70.2, 123, 'john')

The following code is invalid with tuple, because we attempted to update a

tuple, which is not allowed. Similar case is possible with lists −

#!/usr/bin/python

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

list = ['abcd', 786 , 2.23, 'john', 70.2]

tuple[2] = 1000 # Invalid syntax with tuple

list[2] = 1000 # Valid syntax with list

Python Dictionary
Python's dictionaries are kind of hash table type. They work like associative

arrays or hashes found in Perl and consist of key-value pairs. A dictionary

key can be almost any Python type, but are usually numbers or strings.

Values, on the other hand, can be any arbitrary Python object.

Dictionaries are enclosed by curly braces ({ }) and values can be assigned

and accessed using square braces ([]). For example −

Computer Programming using Python: by Haridas Kataria

9

 Live Demo

#!/usr/bin/python

dict = {}

dict['one'] = "This is one"

dict[2] = "This is two"

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

print dict['one'] # Prints value for 'one' key

print dict[2] # Prints value for 2 key

print tinydict # Prints complete dictionary

print tinydict.keys() # Prints all the keys

print tinydict.values() # Prints all the values

This produce the following result −

This is one
This is two
{'dept': 'sales', 'code': 6734, 'name': 'john'}
['dept', 'code', 'name']
['sales', 6734, 'john']

Dictionaries have no concept of order among elements. It is incorrect to say

that the elements are "out of order"; they are simply unordered.

Data Type Conversion
Sometimes, you may need to perform conversions between the built-in

types. To convert between types, you simply use the type name as a

function.

There are several built-in functions to perform conversion from one data

type to another. These functions return a new object representing the

converted value.

http://tpcg.io/DlY1Gc

Computer Programming using Python: by Haridas Kataria

10

Sr.No. Function & Description

1
int(x [,base])

Converts x to an integer. base specifies the base if x is a string.

2
long(x [,base])

Converts x to a long integer. base specifies the base if x is a string.

3
float(x)

Converts x to a floating-point number.

4
complex(real [,imag])

Creates a complex number.

5
str(x)

Converts object x to a string representation.

6
repr(x)

Converts object x to an expression string.

7
eval(str)

Evaluates a string and returns an object.

8
tuple(s)

Converts s to a tuple.

9
list(s)

Converts s to a list.

10
set(s)

Computer Programming using Python: by Haridas Kataria

11

Converts s to a set.

11
dict(d)

Creates a dictionary. d must be a sequence of (key,value) tuples.

12
frozenset(s)

Converts s to a frozen set.

13
chr(x)

Converts an integer to a character.

14
unichr(x)

Converts an integer to a Unicode character.

15
ord(x)

Converts a single character to its integer value.

16
hex(x)

Converts an integer to a hexadecimal string.

17
oct(x)

Converts an integer to an octal string.

Basic Operators

Operators are the constructs which can manipulate the value of operands.

Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and

+ is called operator.

Types of Operator
Python language supports the following types of operators.

Computer Programming using Python: by Haridas Kataria

12

• Arithmetic Operators

• Comparison (Relational) Operators

• Assignment Operators

• Logical Operators

• Bitwise Operators

• Membership Operators

• Identity Operators

Let us have a look on all operators one by one.

Python Arithmetic Operators
Assume variable a holds 10 and variable b holds 20, then −

[Show Example]

Operator Description Example

+ Addition Adds values on either side of the operator. a + b =

30

- Subtraction Subtracts right hand operand from left hand operand. a – b = -
10

*
Multiplication

Multiplies values on either side of the operator a * b =
200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and
returns remainder

b % a =
0

** Exponent Performs exponential (power) calculation on operators a**b
=10 to
the

power 20

https://www.tutorialspoint.com/python/arithmetic_operators_example.htm

Computer Programming using Python: by Haridas Kataria

13

// Floor Division - The division of operands where the

result is the quotient in which the digits after the
decimal point are removed. But if one of the operands
is negative, the result is floored, i.e., rounded away

from zero (towards negative infinity) −

9//2 = 4

and
9.0//2.0
= 4.0, -

11//3 =
-4, -
11.0//3

= -4.0

Python Comparison Operators
These operators compare the values on either sides of them and decide the

relation among them. They are also called Relational operators.

Assume variable a holds 10 and variable b holds 20, then −

[Show Example]

Operator Description Example

== If the values of two operands are equal, then the condition
becomes true.

(a == b)
is not
true.

!= If values of two operands are not equal, then condition
becomes true.

(a != b)
is true.

<> If values of two operands are not equal, then condition
becomes true.

(a <> b)
is true.

This is
similar to
!=

operator.

> If the value of left operand is greater than the value of

right operand, then condition becomes true.

(a > b)

is not
true.

< If the value of left operand is less than the value of right

operand, then condition becomes true.

(a < b)

is true.

https://www.tutorialspoint.com/python/comparison_operators_example.htm

Computer Programming using Python: by Haridas Kataria

14

>= If the value of left operand is greater than or equal to the

value of right operand, then condition becomes true.

(a >= b)

is not
true.

<= If the value of left operand is less than or equal to the
value of right operand, then condition becomes true.

(a <= b)
is true.

Python Assignment Operators
Assume variable a holds 10 and variable b holds 20, then −

[Show Example]

Operator Description Example

= Assigns values from right side operands to left side
operand

c = a + b
assigns

value of a
+ b into c

+= Add AND It adds right operand to the left operand and assign
the result to left operand

c += a is
equivalent
to c = c +

a

-= Subtract
AND

It subtracts right operand from the left operand and
assign the result to left operand

c -= a is
equivalent

to c = c -
a

*= Multiply
AND

It multiplies right operand with the left operand and
assign the result to left operand

c *= a is
equivalent
to c = c *

a

/= Divide AND It divides left operand with the right operand and

assign the result to left operand

c /= a is

equivalent
to c = c /
ac /= a is

equivalent
to c = c /

https://www.tutorialspoint.com/python/assignment_operators_example.htm

Computer Programming using Python: by Haridas Kataria

15

a

%= Modulus
AND

It takes modulus using two operands and assign the
result to left operand

c %= a is
equivalent

to c = c
% a

**= Exponent

AND

Performs exponential (power) calculation on

operators and assign value to the left operand

c **= a is

equivalent
to c = c
** a

//= Floor
Division

It performs floor division on operators and assign
value to the left operand

c //= a is
equivalent

to c = c //
a

Python Bitwise Operators
Bitwise operator works on bits and performs bit by bit operation. Assume if

a = 60; and b = 13; Now in binary format they will be as follows −

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

There are following Bitwise operators supported by Python language

[Show Example]

Operator Description Example

https://www.tutorialspoint.com/python/bitwise_operators_example.htm

Computer Programming using Python: by Haridas Kataria

16

& Binary AND Operator copies a bit to the result if it exists in

both operands

(a & b)

(means
0000 1100)

| Binary OR It copies a bit if it exists in either operand. (a | b) = 61
(means
0011 1101)

^ Binary XOR It copies the bit if it is set in one operand but
not both.

(a ^ b) =
49 (means
0011 0001)

~ Binary Ones
Complement

It is unary and has the effect of 'flipping' bits.

(~a) = -61
(means

1100 0011
in 2's
complement

form due to
a signed
binary

number.

<< Binary Left

Shift

The left operands value is moved left by the

number of bits specified by the right operand.

a << 2 =

240 (means
1111 0000)

>> Binary Right
Shift

The left operands value is moved right by the
number of bits specified by the right operand.

a >> 2 =
15 (means
0000 1111)

Python Logical Operators
There are following logical operators supported by Python language.

Assume variable a holds 10 and variable b holds 20 then

[Show Example]

Operator Description Example

and Logical If both the operands are true then condition becomes (a and b)

https://www.tutorialspoint.com/python/logical_operators_example.htm

Computer Programming using Python: by Haridas Kataria

17

AND true. is true.

or Logical OR If any of the two operands are non-zero then
condition becomes true.

(a or b)
is true.

not Logical
NOT

Used to reverse the logical state of its operand. Not(a
and b) is
false.

Used to reverse the logical state of its operand.

Python Membership Operators
Python’s membership operators test for membership in a sequence, such as

strings, lists, or tuples. There are two membership operators as explained

below −

[Show Example]

Operator Description Example

in Evaluates to true if it finds a variable in the specified
sequence and false otherwise.

x in y,
here in

results in
a 1 if x is
a

member
of
sequence

y.

not in Evaluates to true if it does not finds a variable in the

specified sequence and false otherwise.

x not in

y, here
not in
results in

a 1 if x is
not a
member

of
sequence
y.

https://www.tutorialspoint.com/python/membership_operators_example.htm

Computer Programming using Python: by Haridas Kataria

18

Python Identity Operators
Identity operators compare the memory locations of two objects. There are

two Identity operators explained below −

[Show Example]

Operator Description Example

is Evaluates to true if the variables on either side of the

operator point to the same object and false
otherwise.

x is y,

here is results
in 1 if id(x)
equals id(y).

is not Evaluates to false if the variables on either side of the
operator point to the same object and true otherwise.

x is not y,
here is

not results in
1 if id(x) is
not equal to

id(y).

Python Operators Precedence
The following table lists all operators from highest precedence to lowest.

[Show Example]

Sr.No. Operator & Description

1
**

Exponentiation (raise to the power)

2
~ + -

Complement, unary plus and minus (method names for the last two are

+@ and -@)

3
* / % //

https://www.tutorialspoint.com/python/identity_operators_example.htm
https://www.tutorialspoint.com/python/operators_precedence_example.htm

Computer Programming using Python: by Haridas Kataria

19

Multiply, divide, modulo and floor division

4
+ -

Addition and subtraction

5
>> <<

Right and left bitwise shift

6
&

Bitwise 'AND'

7
^ |

Bitwise exclusive `OR' and regular `OR'

8
<= < > >=

Comparison operators

9
<> == !=

Equality operators

10
= %= /= //= -= += *= **=

Assignment operators

11
is is not

Identity operators

12
in not in

Membership operators

13
not or and

Computer Programming using Python: by Haridas Kataria

20

Logical operators

Decision Making

Decision making is anticipation of conditions occurring while execution of

the program and specifying actions taken according to the conditions.

Decision structures evaluate multiple expressions which produce TRUE or

FALSE as outcome. You need to determine which action to take and which

statements to execute if outcome is TRUE or FALSE otherwise.

Following is the general form of a typical decision making structure found in

most of the programming languages −

Python programming language assumes any non-zero and non-

null values as TRUE, and if it is either zero or null, then it is assumed as

FALSE value.

Python programming language provides following types of decision making

statements. Click the following links to check their detail.

Sr.No. Statement & Description

Computer Programming using Python: by Haridas Kataria

21

1 if statements

An if statement consists of a boolean expression followed by one or

more statements.

2 if...else statements

An if statement can be followed by an optional else statement, which

executes when the boolean expression is FALSE.

3 nested if statements

You can use one if or else if statement inside another if or else

ifstatement(s).

Let us go through each decision making briefly −

Single Statement Suites
If the suite of an if clause consists only of a single line, it may go on the

same line as the header statement.

Here is an example of a one-line if clause −

 Live Demo

#!/usr/bin/python

var = 100

if (var == 100) : print "Value of expression is 100"

print "Good bye!"

When the above code is executed, it produces the following result −

Value of expression is 100
Good bye!

Loops

In general, statements are executed sequentially: The first statement in a

function is executed first, followed by the second, and so on. There may be

a situation when you need to execute a block of code several number of

times.

https://www.tutorialspoint.com/python/python_if_statement.htm
https://www.tutorialspoint.com/python/python_if_else.htm
https://www.tutorialspoint.com/python/nested_if_statements_in_python.htm
http://tpcg.io/6fSJOo

Computer Programming using Python: by Haridas Kataria

22

Programming languages provide various control structures that allow for

more complicated execution paths.

A loop statement allows us to execute a statement or group of statements

multiple times. The following diagram illustrates a loop statement −

Python programming language provides following types of loops to handle

looping requirements.

Sr.No. Loop Type & Description

1 while loop

Repeats a statement or group of statements while a given condition is

TRUE. It tests the condition before executing the loop body.

2 for loop

Executes a sequence of statements multiple times and abbreviates the

code that manages the loop variable.

3 nested loops

You can use one or more loop inside any another while, for or do..while

https://www.tutorialspoint.com/python/python_while_loop.htm
https://www.tutorialspoint.com/python/python_for_loop.htm
https://www.tutorialspoint.com/python/python_nested_loops.htm

Computer Programming using Python: by Haridas Kataria

23

loop.

Loop Control Statements
Loop control statements change execution from its normal sequence. When

execution leaves a scope, all automatic objects that were created in that

scope are destroyed.

Python supports the following control statements. Click the following links

to check their detail.

Let us go through the loop control statements briefly

Sr.No. Control Statement & Description

1 break statement

Terminates the loop statement and transfers execution to the statement

immediately following the loop.

2 continue statement

Causes the loop to skip the remainder of its body and immediately retest

its condition prior to reiterating.

3 pass statement

The pass statement in Python is used when a statement is required

syntactically but you do not want any command or code to execute.

Lists

he most basic data structure in Python is the sequence. Each element of a

sequence is assigned a number - its position or index. The first index is

zero, the second index is one, and so forth.

Python has six built-in types of sequences, but the most common ones are

lists and tuples, which we would see in this tutorial.

There are certain things you can do with all sequence types. These

operations include indexing, slicing, adding, multiplying, and checking for

https://www.tutorialspoint.com/python/python_break_statement.htm
https://www.tutorialspoint.com/python/python_continue_statement.htm
https://www.tutorialspoint.com/python/python_pass_statement.htm

Computer Programming using Python: by Haridas Kataria

24

membership. In addition, Python has built-in functions for finding the length

of a sequence and for finding its largest and smallest elements.

Python Lists
The list is a most versatile datatype available in Python which can be

written as a list of comma-separated values (items) between square

brackets. Important thing about a list is that items in a list need not be of

the same type.

Creating a list is as simple as putting different comma-separated values

between square brackets. For example −

list1 = ['physics', 'chemistry', 1997, 2000];
list2 = [1, 2, 3, 4, 5];
list3 = ["a", "b", "c", "d"]

Similar to string indices, list indices start at 0, and lists can be sliced,

concatenated and so on.

Accessing Values in Lists
To access values in lists, use the square brackets for slicing along with the

index or indices to obtain value available at that index. For example −

 Live Demo

#!/usr/bin/python

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5, 6, 7];

print "list1[0]: ", list1[0]

print "list2[1:5]: ", list2[1:5]

When the above code is executed, it produces the following result −

list1[0]: physics
list2[1:5]: [2, 3, 4, 5]

Updating Lists

http://tpcg.io/GWTzcq

Computer Programming using Python: by Haridas Kataria

25

You can update single or multiple elements of lists by giving the slice on the

left-hand side of the assignment operator, and you can add to elements in a

list with the append() method. For example −

 Live Demo

#!/usr/bin/python

list = ['physics', 'chemistry', 1997, 2000];

print "Value available at index 2 : "

print list[2]

list[2] = 2001;

print "New value available at index 2 : "

print list[2]

Note − append() method is discussed in subsequent section.

When the above code is executed, it produces the following result −

Value available at index 2 :
1997
New value available at index 2 :
2001

Delete List Elements
To remove a list element, you can use either the del statement if you know

exactly which element(s) you are deleting or the remove() method if you do

not know. For example −

 Live Demo

#!/usr/bin/python

list1 = ['physics', 'chemistry', 1997, 2000];

print list1

del list1[2];

print "After deleting value at index 2 : "

http://tpcg.io/PHXpBD
http://tpcg.io/k3xK1x

Computer Programming using Python: by Haridas Kataria

26

print list1

When the above code is executed, it produces following result −

['physics', 'chemistry', 1997, 2000]
After deleting value at index 2 :
['physics', 'chemistry', 2000]

Note − remove() method is discussed in subsequent section.

Basic List Operations
Lists respond to the + and * operators much like strings; they mean

concatenation and repetition here too, except that the result is a new list,

not a string.

In fact, lists respond to all of the general sequence operations we used on

strings in the prior chapter.

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]: print x, 1 2 3 Iteration

Indexing, Slicing, and Matrixes
Because lists are sequences, indexing and slicing work the same way for

lists as they do for strings.

Assuming following input −

L = ['spam', 'Spam', 'SPAM!']

Computer Programming using Python: by Haridas Kataria

27

Python Expression Results Description

L[2] SPAM! Offsets start at zero

L[-2] Spam Negative: count from the

right

L[1:] ['Spam', 'SPAM!'] Slicing fetches sections

Built-in List Functions & Methods
Python includes the following list functions −

Sr.No. Function with Description

1 cmp(list1, list2)

Compares elements of both lists.

2 len(list)

Gives the total length of the list.

3 max(list)

Returns item from the list with max value.

4 min(list)

Returns item from the list with min value.

5 list(seq)

Converts a tuple into list.

Python includes following list methods

Sr.No. Methods with Description

1 list.append(obj)

https://www.tutorialspoint.com/python/list_cmp.htm
https://www.tutorialspoint.com/python/list_len.htm
https://www.tutorialspoint.com/python/list_max.htm
https://www.tutorialspoint.com/python/list_min.htm
https://www.tutorialspoint.com/python/list_list.htm
https://www.tutorialspoint.com/python/list_append.htm

Computer Programming using Python: by Haridas Kataria

28

Appends object obj to list

2 list.count(obj)

Returns count of how many times obj occurs in list

3 list.extend(seq)

Appends the contents of seq to list

4 list.index(obj)

Returns the lowest index in list that obj appears

5 list.insert(index, obj)

Inserts object obj into list at offset index

6 list.pop(obj=list[-1])

Removes and returns last object or obj from list

7 list.remove(obj)

Removes object obj from list

8 list.reverse()

Reverses objects of list in place

9 list.sort([func])

Sorts objects of list, use compare func if given

Tuples

A tuple is a sequence of immutable Python objects. Tuples are sequences,

just like lists. The differences between tuples and lists are, the tuples

cannot be changed unlike lists and tuples use parentheses, whereas lists

use square brackets.

Creating a tuple is as simple as putting different comma-separated values.

Optionally you can put these comma-separated values between parentheses

also. For example −

tup1 = ('physics', 'chemistry', 1997, 2000);
tup2 = (1, 2, 3, 4, 5);

https://www.tutorialspoint.com/python/list_count.htm
https://www.tutorialspoint.com/python/list_extend.htm
https://www.tutorialspoint.com/python/list_index.htm
https://www.tutorialspoint.com/python/list_insert.htm
https://www.tutorialspoint.com/python/list_pop.htm
https://www.tutorialspoint.com/python/list_remove.htm
https://www.tutorialspoint.com/python/list_reverse.htm
https://www.tutorialspoint.com/python/list_sort.htm

Computer Programming using Python: by Haridas Kataria

29

tup3 = "a", "b", "c", "d";

The empty tuple is written as two parentheses containing nothing −

tup1 = ();

To write a tuple containing a single value you have to include a comma,

even though there is only one value −

tup1 = (50,);

Like string indices, tuple indices start at 0, and they can be sliced,

concatenated, and so on.

Accessing Values in Tuples
To access values in tuple, use the square brackets for slicing along with the

index or indices to obtain value available at that index. For example −

 Live Demo

#!/usr/bin/python

tup1 = ('physics', 'chemistry', 1997, 2000);

tup2 = (1, 2, 3, 4, 5, 6, 7);

print "tup1[0]: ", tup1[0];

print "tup2[1:5]: ", tup2[1:5];

When the above code is executed, it produces the following result −

tup1[0]: physics
tup2[1:5]: [2, 3, 4, 5]

Updating Tuples
Tuples are immutable which means you cannot update or change the values

of tuple elements. You are able to take portions of existing tuples to create

new tuples as the following example demonstrates −

 Live Demo

#!/usr/bin/python

tup1 = (12, 34.56);

http://tpcg.io/ZnuXed
http://tpcg.io/QjdQHf

Computer Programming using Python: by Haridas Kataria

30

tup2 = ('abc', 'xyz');

Following action is not valid for tuples

tup1[0] = 100;

So let's create a new tuple as follows

tup3 = tup1 + tup2;

print tup3;

When the above code is executed, it produces the following result −

(12, 34.56, 'abc', 'xyz')

Delete Tuple Elements
Removing individual tuple elements is not possible. There is, of course,

nothing wrong with putting together another tuple with the undesired

elements discarded.

To explicitly remove an entire tuple, just use the del statement. For

example −

 Live Demo

#!/usr/bin/python

tup = ('physics', 'chemistry', 1997, 2000);

print tup;

del tup;

print "After deleting tup : ";

print tup;

This produces the following result. Note an exception raised, this is because

after del tup tuple does not exist any more −

('physics', 'chemistry', 1997, 2000)
After deleting tup :
Traceback (most recent call last):
 File "test.py", line 9, in <module>

http://tpcg.io/ANv9OB

Computer Programming using Python: by Haridas Kataria

31

 print tup;
NameError: name 'tup' is not defined

Basic Tuples Operations
Tuples respond to the + and * operators much like strings; they mean

concatenation and repetition here too, except that the result is a new tuple,

not a string.

In fact, tuples respond to all of the general sequence operations we used on

strings in the prior chapter −

Python Expression Results Description

len((1, 2, 3)) 3 Length

(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) Concatenation

('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!', 'Hi!') Repetition

3 in (1, 2, 3) True Membership

for x in (1, 2, 3): print x, 1 2 3 Iteration

Indexing, Slicing, and Matrixes
Because tuples are sequences, indexing and slicing work the same way for

tuples as they do for strings. Assuming following input −

L = ('spam', 'Spam', 'SPAM!')

Python Expression Results Description

L[2] 'SPAM!' Offsets start at zero

Computer Programming using Python: by Haridas Kataria

32

L[-2] 'Spam' Negative: count from the

right

L[1:] ['Spam', 'SPAM!'] Slicing fetches sections

No Enclosing Delimiters
Any set of multiple objects, comma-separated, written without identifying

symbols, i.e., brackets for lists, parentheses for tuples, etc., default to

tuples, as indicated in these short examples −

 Live Demo

#!/usr/bin/python

print 'abc', -4.24e93, 18+6.6j, 'xyz';

x, y = 1, 2;

print "Value of x , y : ", x,y;

When the above code is executed, it produces the following result −

abc -4.24e+93 (18+6.6j) xyz
Value of x , y : 1 2

Built-in Tuple Functions
Python includes the following tuple functions −

Sr.No. Function with Description

1 cmp(tuple1, tuple2)

Compares elements of both tuples.

2 len(tuple)

Gives the total length of the tuple.

3 max(tuple)

http://tpcg.io/TO4E3c
https://www.tutorialspoint.com/python/tuple_cmp.htm
https://www.tutorialspoint.com/python/tuple_len.htm
https://www.tutorialspoint.com/python/tuple_max.htm

Computer Programming using Python: by Haridas Kataria

33

Returns item from the tuple with max value.

4 min(tuple)

Returns item from the tuple with min value.

5 tuple(seq)

Converts a list into tuple.

Dictionary

ach key is separated from its value by a colon (:), the items are separated

by commas, and the whole thing is enclosed in curly braces. An empty

dictionary without any items is written with just two curly braces, like this:

{}.

Keys are unique within a dictionary while values may not be. The values of

a dictionary can be of any type, but the keys must be of an immutable data

type such as strings, numbers, or tuples.

Accessing Values in Dictionary
To access dictionary elements, you can use the familiar square brackets

along with the key to obtain its value. Following is a simple example −

 Live Demo

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

print "dict['Name']: ", dict['Name']

print "dict['Age']: ", dict['Age']

When the above code is executed, it produces the following result −

dict['Name']: Zara
dict['Age']: 7

If we attempt to access a data item with a key, which is not part of the

dictionary, we get an error as follows −

https://www.tutorialspoint.com/python/tuple_min.htm
https://www.tutorialspoint.com/python/tuple_tuple.htm
http://tpcg.io/KTBDvD

Computer Programming using Python: by Haridas Kataria

34

 Live Demo

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

print "dict['Alice']: ", dict['Alice']

When the above code is executed, it produces the following result −

dict['Alice']:
Traceback (most recent call last):
 File "test.py", line 4, in <module>
 print "dict['Alice']: ", dict['Alice'];
KeyError: 'Alice'

Updating Dictionary
You can update a dictionary by adding a new entry or a key-value pair,

modifying an existing entry, or deleting an existing entry as shown below in

the simple example −

 Live Demo

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

dict['Age'] = 8; # update existing entry

dict['School'] = "DPS School"; # Add new entry

print "dict['Age']: ", dict['Age']

print "dict['School']: ", dict['School']

When the above code is executed, it produces the following result −

dict['Age']: 8
dict['School']: DPS School

Delete Dictionary Elements

http://tpcg.io/pzUOPx
http://tpcg.io/porcg2

Computer Programming using Python: by Haridas Kataria

35

You can either remove individual dictionary elements or clear the entire

contents of a dictionary. You can also delete entire dictionary in a single

operation.

To explicitly remove an entire dictionary, just use the del statement.

Following is a simple example −

 Live Demo

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

del dict['Name']; # remove entry with key 'Name'

dict.clear(); # remove all entries in dict

del dict ; # delete entire dictionary

print "dict['Age']: ", dict['Age']

print "dict['School']: ", dict['School']

This produces the following result. Note that an exception is raised because

after del dict dictionary does not exist any more −

dict['Age']:
Traceback (most recent call last):
 File "test.py", line 8, in <module>
 print "dict['Age']: ", dict['Age'];
TypeError: 'type' object is unsubscriptable

Note − del() method is discussed in subsequent section.

Properties of Dictionary Keys
Dictionary values have no restrictions. They can be any arbitrary Python

object, either standard objects or user-defined objects. However, same is

not true for the keys.

There are two important points to remember about dictionary keys −

(a) More than one entry per key not allowed. Which means no duplicate

key is allowed. When duplicate keys encountered during assignment, the

last assignment wins. For example −

http://tpcg.io/mbvT73

Computer Programming using Python: by Haridas Kataria

36

 Live Demo

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Name': 'Manni'}

print "dict['Name']: ", dict['Name']

When the above code is executed, it produces the following result −

dict['Name']: Manni

(b) Keys must be immutable. Which means you can use strings, numbers

or tuples as dictionary keys but something like ['key'] is not allowed.

Following is a simple example −

 Live Demo

#!/usr/bin/python

dict = {['Name']: 'Zara', 'Age': 7}

print "dict['Name']: ", dict['Name']

When the above code is executed, it produces the following result −

Traceback (most recent call last):
 File "test.py", line 3, in <module>
 dict = {['Name']: 'Zara', 'Age': 7};
TypeError: unhashable type: 'list'

Built-in Dictionary Functions & Methods
Python includes the following dictionary functions −

Sr.No. Function with Description

1 cmp(dict1, dict2)

Compares elements of both dict.

2 len(dict)

Gives the total length of the dictionary. This would be equal to the

http://tpcg.io/rEJFby
http://tpcg.io/BLKmXZ
https://www.tutorialspoint.com/python/dictionary_cmp.htm
https://www.tutorialspoint.com/python/dictionary_len.htm

Computer Programming using Python: by Haridas Kataria

37

number of items in the dictionary.

3 str(dict)

Produces a printable string representation of a dictionary

4 type(variable)

Returns the type of the passed variable. If passed variable is dictionary,

then it would return a dictionary type.

Python includes following dictionary methods −

Sr.No. Methods with Description

1 dict.clear()

Removes all elements of dictionary dict

2 dict.copy()

Returns a shallow copy of dictionary dict

3 dict.fromkeys()

Create a new dictionary with keys from seq and values set to value.

4 dict.get(key, default=None)

For key key, returns value or default if key not in dictionary

5 dict.has_key(key)

Returns true if key in dictionary dict, false otherwise

6 dict.items()

Returns a list of dict's (key, value) tuple pairs

7 dict.keys()

Returns list of dictionary dict's keys

8 dict.setdefault(key, default=None)

Similar to get(), but will set dict[key]=default if key is not already in dict

https://www.tutorialspoint.com/python/dictionary_str.htm
https://www.tutorialspoint.com/python/dictionary_type.htm
https://www.tutorialspoint.com/python/dictionary_clear.htm
https://www.tutorialspoint.com/python/dictionary_copy.htm
https://www.tutorialspoint.com/python/dictionary_fromkeys.htm
https://www.tutorialspoint.com/python/dictionary_get.htm
https://www.tutorialspoint.com/python/dictionary_has_key.htm
https://www.tutorialspoint.com/python/dictionary_items.htm
https://www.tutorialspoint.com/python/dictionary_keys.htm
https://www.tutorialspoint.com/python/dictionary_setdefault.htm

Computer Programming using Python: by Haridas Kataria

38

9 dict.update(dict2)

Adds dictionary dict2's key-values pairs to dict

10 dict.values()

Returns list of dictionary dict's values

Basic Syntax

The Python language has many similarities to Perl, C, and Java. However,

there are some definite differences between the languages.

First Python Program
Let us execute programs in different modes of programming.

Interactive Mode Programming

Invoking the interpreter without passing a script file as a parameter brings

up the following prompt −

$ python

Python 2.4.3 (#1, Nov 11 2010, 13:34:43)

[GCC 4.1.2 20080704 (Red Hat 4.1.2-48)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

Type the following text at the Python prompt and press the Enter −

>>> print "Hello, Python!"

If you are running new version of Python, then you would need to use print

statement with parenthesis as in print ("Hello, Python!");. However in

Python version 2.4.3, this produces the following result −

Hello, Python!

Script Mode Programming

https://www.tutorialspoint.com/python/dictionary_update.htm
https://www.tutorialspoint.com/python/dictionary_values.htm

Computer Programming using Python: by Haridas Kataria

39

Invoking the interpreter with a script parameter begins execution of the

script and continues until the script is finished. When the script is finished,

the interpreter is no longer active.

Let us write a simple Python program in a script. Python files have

extension .py. Type the following source code in a test.py file −

 Live Demo

print "Hello, Python!"

We assume that you have Python interpreter set in PATH variable. Now, try

to run this program as follows −

$ python test.py

This produces the following result −

Hello, Python!

Let us try another way to execute a Python script. Here is the modified

test.py file −

 Live Demo

#!/usr/bin/python

print "Hello, Python!"

We assume that you have Python interpreter available in /usr/bin directory.

Now, try to run this program as follows −

$ chmod +x test.py # This is to make file executable

$./test.py

This produces the following result −

Hello, Python!

Python Identifiers
A Python identifier is a name used to identify a variable, function, class,

module or other object. An identifier starts with a letter A to Z or a to z or

http://tpcg.io/lsYEBf
http://tpcg.io/2hIf1p

Computer Programming using Python: by Haridas Kataria

40

an underscore (_) followed by zero or more letters, underscores and digits

(0 to 9).

Python does not allow punctuation characters such as @, $, and % within

identifiers. Python is a case sensitive programming language.

Thus, Manpower and manpower are two different identifiers in Python.

Here are naming conventions for Python identifiers −

• Class names start with an uppercase letter. All other identifiers start with a

lowercase letter.

• Starting an identifier with a single leading underscore indicates that the

identifier is private.

• Starting an identifier with two leading underscores indicates a strongly private

identifier.

• If the identifier also ends with two trailing underscores, the identifier is a

language-defined special name.

Reserved Words
The following list shows the Python keywords. These are reserved words

and you cannot use them as constant or variable or any other identifier

names. All the Python keywords contain lowercase letters only.

and exec not

assert finally or

break for pass

class from print

continue global raise

def if return

Computer Programming using Python: by Haridas Kataria

41

del import try

elif in while

else is with

except lambda yield

Lines and Indentation
Python provides no braces to indicate blocks of code for class and function

definitions or flow control. Blocks of code are denoted by line indentation,

which is rigidly enforced.

The number of spaces in the indentation is variable, but all statements

within the block must be indented the same amount. For example −

if True:
 print "True"
else:
 print "False"

However, the following block generates an error −

if True:

print "Answer"

print "True"

else:

print "Answer"

print "False"

Thus, in Python all the continuous lines indented with same number of

spaces would form a block. The following example has various statement

blocks −

Note − Do not try to understand the logic at this point of time. Just make

sure you understood various blocks even if they are without braces.

Computer Programming using Python: by Haridas Kataria

42

#!/usr/bin/python

import sys

try:

 # open file stream

 file = open(file_name, "w")

except IOError:

 print "There was an error writing to", file_name

 sys.exit()

print "Enter '", file_finish,

print "' When finished"

while file_text != file_finish:

 file_text = raw_input("Enter text: ")

 if file_text == file_finish:

 # close the file

 file.close

 break

 file.write(file_text)

 file.write("\n")

file.close()

file_name = raw_input("Enter filename: ")

if len(file_name) == 0:

 print "Next time please enter something"

 sys.exit()

try:

 file = open(file_name, "r")

except IOError:

Computer Programming using Python: by Haridas Kataria

43

 print "There was an error reading file"

 sys.exit()

file_text = file.read()

file.close()

print file_text

Multi-Line Statements
Statements in Python typically end with a new line. Python does, however,

allow the use of the line continuation character (\) to denote that the line

should continue. For example −

total = item_one + \
 item_two + \
 item_three

Statements contained within the [], {}, or () brackets do not need to use

the line continuation character. For example −

days = ['Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday']

Quotation in Python
Python accepts single ('), double (") and triple (''' or """) quotes to denote

string literals, as long as the same type of quote starts and ends the string.

The triple quotes are used to span the string across multiple lines. For

example, all the following are legal −

word = 'word'
sentence = "This is a sentence."
paragraph = """This is a paragraph. It is
made up of multiple lines and sentences."""

Comments in Python
A hash sign (#) that is not inside a string literal begins a comment. All

characters after the # and up to the end of the physical line are part of the

comment and the Python interpreter ignores them.

 Live Demo

#!/usr/bin/python

http://tpcg.io/VgbqMb

Computer Programming using Python: by Haridas Kataria

44

First comment

print "Hello, Python!" # second comment

This produces the following result −

Hello, Python!

You can type a comment on the same line after a statement or expression

−

name = "Madisetti" # This is again comment

You can comment multiple lines as follows −

This is a comment.
This is a comment, too.
This is a comment, too.
I said that already.

Following triple-quoted string is also ignored by Python interpreter and can

be used as a multiline comments:

'''
This is a multiline
comment.
'''

Using Blank Lines
A line containing only whitespace, possibly with a comment, is known as a

blank line and Python totally ignores it.

In an interactive interpreter session, you must enter an empty physical line

to terminate a multiline statement.

Waiting for the User
The following line of the program displays the prompt, the statement saying

“Press the enter key to exit”, and waits for the user to take action −

#!/usr/bin/python

raw_input("\n\nPress the enter key to exit.")

Here, "\n\n" is used to create two new lines before displaying the actual

line. Once the user presses the key, the program ends. This is a nice trick

to keep a console window open until the user is done with an application.

Computer Programming using Python: by Haridas Kataria

45

Multiple Statements on a Single Line
The semicolon (;) allows multiple statements on the single line given that

neither statement starts a new code block. Here is a sample snip using the

semicolon −

import sys; x = 'foo'; sys.stdout.write(x + '\n')

Multiple Statement Groups as Suites
A group of individual statements, which make a single code block are

called suites in Python. Compound or complex statements, such as if,

while, def, and class require a header line and a suite.

Header lines begin the statement (with the keyword) and terminate with a

colon (:) and are followed by one or more lines which make up the suite.

For example −

if expression :
 suite
elif expression :
 suite
else :
 suite

Command Line Arguments
Many programs can be run to provide you with some basic information

about how they should be run. Python enables you to do this with -h −

$ python -h

usage: python [option] ... [-c cmd | -m mod | file | -] [arg] ...

Options and arguments (and corresponding environment variables):

-c cmd : program passed in as string (terminates option list)

-d : debug output from parser (also PYTHONDEBUG=x)

-E : ignore environment variables (such as PYTHONPATH)

-h : print this help message and exit

[etc.]

Computer Programming using Python: by Haridas Kataria

46

You can also program your script in such a way that it should accept various

options. Command Line Arguments is an advanced topic and should be

studied a bit later once you have gone through rest of the Python concepts

Regular Expressions

A regular expression is a special sequence of characters that helps you

match or find other strings or sets of strings, using a specialized syntax

held in a pattern. Regular expressions are widely used in UNIX world.

The module re provides full support for Perl-like regular expressions in

Python. The re module raises the exception re.error if an error occurs while

compiling or using a regular expression.

We would cover two important functions, which would be used to handle

regular expressions. But a small thing first: There are various characters,

which would have special meaning when they are used in regular

expression. To avoid any confusion while dealing with regular expressions,

we would use Raw Strings as r'expression'.

The match Function
This function attempts to match RE pattern to string with optional flags.

Here is the syntax for this function −

re.match(pattern, string, flags=0)

Here is the description of the parameters −

Sr.No. Parameter & Description

1
pattern

This is the regular expression to be matched.

2
string

This is the string, which would be searched to match the pattern at the

beginning of string.

https://www.tutorialspoint.com/python/python_command_line_arguments.htm

Computer Programming using Python: by Haridas Kataria

47

3
flags

You can specify different flags using bitwise OR (|). These are modifiers,

which are listed in the table below.

The re.match function returns a match object on success, None on failure.

We usegroup(num) or groups() function of match object to get matched

expression.

Sr.No. Match Object Method & Description

1
group(num=0)

This method returns entire match (or specific subgroup num)

2
groups()

This method returns all matching subgroups in a tuple (empty if there

weren't any)

Example
 Live Demo

#!/usr/bin/python

import re

line = "Cats are smarter than dogs"

matchObj = re.match(r'(.*) are (.*?) .*', line, re.M|re.I)

if matchObj:

 print "matchObj.group() : ", matchObj.group()

 print "matchObj.group(1) : ", matchObj.group(1)

 print "matchObj.group(2) : ", matchObj.group(2)

else:

http://tpcg.io/cZGpLX

Computer Programming using Python: by Haridas Kataria

48

 print "No match!!"

When the above code is executed, it produces following result −

matchObj.group() : Cats are smarter than dogs
matchObj.group(1) : Cats
matchObj.group(2) : smarter

The search Function
This function searches for first occurrence of RE pattern within string with

optional flags.

Here is the syntax for this function −

re.search(pattern, string, flags=0)

Here is the description of the parameters −

Sr.No. Parameter & Description

1
pattern

This is the regular expression to be matched.

2
string

This is the string, which would be searched to match the pattern

anywhere in the string.

3
flags

You can specify different flags using bitwise OR (|). These are modifiers,

which are listed in the table below.

The re.search function returns a match object on success, none on failure.

We use group(num) or groups() function of match object to get matched

expression.

Sr.No. Match Object Methods & Description

1
group(num=0)

Computer Programming using Python: by Haridas Kataria

49

This method returns entire match (or specific subgroup num)

2
groups()

This method returns all matching subgroups in a tuple (empty if there

weren't any)

Example
 Live Demo

#!/usr/bin/python

import re

line = "Cats are smarter than dogs";

searchObj = re.search(r'(.*) are (.*?) .*', line, re.M|re.I)

if searchObj:

 print "searchObj.group() : ", searchObj.group()

 print "searchObj.group(1) : ", searchObj.group(1)

 print "searchObj.group(2) : ", searchObj.group(2)

else:

 print "Nothing found!!"

When the above code is executed, it produces following result −

searchObj.group() : Cats are smarter than dogs
searchObj.group(1) : Cats
searchObj.group(2) : smarter

Matching Versus Searching
Python offers two different primitive operations based on regular

expressions: match checks for a match only at the beginning of the string,

while searchchecks for a match anywhere in the string (this is what Perl

does by default).

http://tpcg.io/WE021A

Computer Programming using Python: by Haridas Kataria

50

Example
 Live Demo

#!/usr/bin/python

import re

line = "Cats are smarter than dogs";

matchObj = re.match(r'dogs', line, re.M|re.I)

if matchObj:

 print "match --> matchObj.group() : ", matchObj.group()

else:

 print "No match!!"

searchObj = re.search(r'dogs', line, re.M|re.I)

if searchObj:

 print "search --> searchObj.group() : ", searchObj.group()

else:

 print "Nothing found!!"

When the above code is executed, it produces the following result −

No match!!
search --> matchObj.group() : dogs

Search and Replace
One of the most important re methods that use regular expressions is sub.

Syntax
re.sub(pattern, repl, string, max=0)

This method replaces all occurrences of the RE pattern in string with repl,

substituting all occurrences unless max provided. This method returns

modified string.

http://tpcg.io/1VpZ8k

Computer Programming using Python: by Haridas Kataria

51

Example
 Live Demo

#!/usr/bin/python

import re

phone = "2004-959-559 # This is Phone Number"

Delete Python-style comments

num = re.sub(r'#.*$', "", phone)

print "Phone Num : ", num

Remove anything other than digits

num = re.sub(r'\D', "", phone)

print "Phone Num : ", num

When the above code is executed, it produces the following result −

Phone Num : 2004-959-559
Phone Num : 2004959559

Regular Expression Modifiers: Option Flags
Regular expression literals may include an optional modifier to control

various aspects of matching. The modifiers are specified as an optional flag.

You can provide multiple modifiers using exclusive OR (|), as shown

previously and may be represented by one of these −

Sr.No. Modifier & Description

1
re.I

Performs case-insensitive matching.

2
re.L

http://tpcg.io/jVaoEQ

Computer Programming using Python: by Haridas Kataria

52

Interprets words according to the current locale. This interpretation

affects the alphabetic group (\w and \W), as well as word boundary

behavior(\b and \B).

3
re.M

Makes $ match the end of a line (not just the end of the string) and

makes ^ match the start of any line (not just the start of the string).

4
re.S

Makes a period (dot) match any character, including a newline.

5
re.U

Interprets letters according to the Unicode character set. This flag

affects the behavior of \w, \W, \b, \B.

6
re.X

Permits "cuter" regular expression syntax. It ignores whitespace (except

inside a set [] or when escaped by a backslash) and treats unescaped #

as a comment marker.

Regular Expression Patterns
Except for control characters, (+ ? . * ^ $ () [] { } | \), all characters

match themselves. You can escape a control character by preceding it with

a backslash.

Following table lists the regular expression syntax that is available in Python

−

Sr.No. Pattern & Description

1
^

Matches beginning of line.

Computer Programming using Python: by Haridas Kataria

53

2
$

Matches end of line.

3
.

Matches any single character except newline. Using m option allows it to

match newline as well.

4
[...]

Matches any single character in brackets.

5
[^...]

Matches any single character not in brackets

6
re*

Matches 0 or more occurrences of preceding expression.

7
re+

Matches 1 or more occurrence of preceding expression.

8
re?

Matches 0 or 1 occurrence of preceding expression.

9
re{ n}

Matches exactly n number of occurrences of preceding expression.

10
re{ n,}

Matches n or more occurrences of preceding expression.

11
re{ n, m}

Computer Programming using Python: by Haridas Kataria

54

Matches at least n and at most m occurrences of preceding expression.

12
a| b

Matches either a or b.

13
(re)

Groups regular expressions and remembers matched text.

14
(?imx)

Temporarily toggles on i, m, or x options within a regular expression. If

in parentheses, only that area is affected.

15
(?-imx)

Temporarily toggles off i, m, or x options within a regular expression. If

in parentheses, only that area is affected.

16
(?: re)

Groups regular expressions without remembering matched text.

17
(?imx: re)

Temporarily toggles on i, m, or x options within parentheses.

18
(?-imx: re)

Temporarily toggles off i, m, or x options within parentheses.

19
(?#...)

Comment.

20
(?= re)

Specifies position using a pattern. Doesn't have a range.

Computer Programming using Python: by Haridas Kataria

55

21
(?! re)

Specifies position using pattern negation. Doesn't have a range.

22
(?> re)

Matches independent pattern without backtracking.

23
\w

Matches word characters.

24
\W

Matches nonword characters.

25
\s

Matches whitespace. Equivalent to [\t\n\r\f].

26
\S

Matches nonwhitespace.

27
\d

Matches digits. Equivalent to [0-9].

28
\D

Matches nondigits.

29
\A

Matches beginning of string.

30
\Z

Matches end of string. If a newline exists, it matches just before

Computer Programming using Python: by Haridas Kataria

56

newline.

31
\z

Matches end of string.

32
\G

Matches point where last match finished.

33
\b

Matches word boundaries when outside brackets. Matches backspace

(0x08) when inside brackets.

34
\B

Matches nonword boundaries.

35
\n, \t, etc.

Matches newlines, carriage returns, tabs, etc.

36
\1...\9

Matches nth grouped subexpression.

37
\10

Matches nth grouped subexpression if it matched already. Otherwise

refers to the octal representation of a character code.

Regular Expression Examples
Literal characters

Sr.No. Example & Description

Computer Programming using Python: by Haridas Kataria

57

1
python

Match "python".

Character classes
Sr.No. Example & Description

1
[Pp]ython

Match "Python" or "python"

2
rub[ye]

Match "ruby" or "rube"

3
[aeiou]

Match any one lowercase vowel

4
[0-9]

Match any digit; same as [0123456789]

5
[a-z]

Match any lowercase ASCII letter

6
[A-Z]

Match any uppercase ASCII letter

7
[a-zA-Z0-9]

Match any of the above

8
[^aeiou]

Match anything other than a lowercase vowel

Computer Programming using Python: by Haridas Kataria

58

9
[^0-9]

Match anything other than a digit

Special Character Classes
Sr.No. Example & Description

1
.

Match any character except newline

2
\d

Match a digit: [0-9]

3
\D

Match a nondigit: [^0-9]

4
\s

Match a whitespace character: [\t\r\n\f]

5
\S

Match nonwhitespace: [^ \t\r\n\f]

6
\w

Match a single word character: [A-Za-z0-9_]

7
\W

Match a nonword character: [^A-Za-z0-9_]

Repetition Cases
Sr.No. Example & Description

Computer Programming using Python: by Haridas Kataria

59

1
ruby?

Match "rub" or "ruby": the y is optional

2
ruby*

Match "rub" plus 0 or more ys

3
ruby+

Match "rub" plus 1 or more ys

4
\d{3}

Match exactly 3 digits

5
\d{3,}

Match 3 or more digits

6
\d{3,5}

Match 3, 4, or 5 digits

Nongreedy repetition
This matches the smallest number of repetitions −

Sr.No. Example & Description

1
<.*>

Greedy repetition: matches "<python>perl>"

2
<.*?>

Nongreedy: matches "<python>" in "<python>perl>"

Grouping with Parentheses

Computer Programming using Python: by Haridas Kataria

60

Sr.No. Example & Description

1
\D\d+

No group: + repeats \d

2
(\D\d)+

Grouped: + repeats \D\d pair

3
([Pp]ython(,)?)+

Match "Python", "Python, python, python", etc.

Backreferences
This matches a previously matched group again −

Sr.No. Example & Description

1
([Pp])ython&\1ails

Match python&pails or Python&Pails

2
(['"])[^\1]*\1

Single or double-quoted string. \1 matches whatever the 1st group

matched. \2 matches whatever the 2nd group matched, etc.

Alternatives
Sr.No. Example & Description

1
python|perl

Match "python" or "perl"

2
rub(y|le))

Computer Programming using Python: by Haridas Kataria

61

Match "ruby" or "ruble"

3
Python(!+|\?)

"Python" followed by one or more ! or one ?

Anchors
This needs to specify match position.

Sr.No. Example & Description

1
^Python

Match "Python" at the start of a string or internal line

2
Python$

Match "Python" at the end of a string or line

3
\APython

Match "Python" at the start of a string

4
Python\Z

Match "Python" at the end of a string

5
\bPython\b

Match "Python" at a word boundary

6
\brub\B

\B is nonword boundary: match "rub" in "rube" and "ruby" but not alone

7
Python(?=!)

Match "Python", if followed by an exclamation point.

Computer Programming using Python: by Haridas Kataria

62

8
Python(?!!)

Match "Python", if not followed by an exclamation point.

Special Syntax with Parentheses
Sr.No. Example & Description

1
R(?#comment)

Matches "R". All the rest is a comment

2
R(?i)uby

Case-insensitive while matching "uby"

3
R(?i:uby)

Same as above

4
rub(?:y|le))

Group only without creating \1 backreference

Exception Handling

Python provides two very important features to handle any unexpected

error in your Python programs and to add debugging capabilities in them −

• Exception Handling − This would be covered in this tutorial. Here is a list

standard Exceptions available in Python: Standard Exceptions.

• Assertions − This would be covered in Assertions in Pythontutorial.

List of Standard Exceptions −

Sr.No. Exception Name & Description

https://www.tutorialspoint.com/python/standard_exceptions.htm
https://www.tutorialspoint.com/python/assertions_in_python.htm

Computer Programming using Python: by Haridas Kataria

63

1
Exception

Base class for all exceptions

2
StopIteration

Raised when the next() method of an iterator does not point to any

object.

3
SystemExit

Raised by the sys.exit() function.

4
StandardError

Base class for all built-in exceptions except StopIteration and

SystemExit.

5
ArithmeticError

Base class for all errors that occur for numeric calculation.

6
OverflowError

Raised when a calculation exceeds maximum limit for a numeric type.

7
FloatingPointError

Raised when a floating point calculation fails.

8
ZeroDivisionError

Raised when division or modulo by zero takes place for all numeric

types.

9
AssertionError

Raised in case of failure of the Assert statement.

Computer Programming using Python: by Haridas Kataria

64

10
AttributeError

Raised in case of failure of attribute reference or assignment.

11
EOFError

Raised when there is no input from either the raw_input() or input()

function and the end of file is reached.

12
ImportError

Raised when an import statement fails.

13
KeyboardInterrupt

Raised when the user interrupts program execution, usually by pressing

Ctrl+c.

14
LookupError

Base class for all lookup errors.

15
IndexError

Raised when an index is not found in a sequence.

16
KeyError

Raised when the specified key is not found in the dictionary.

17
NameError

Raised when an identifier is not found in the local or global namespace.

18
UnboundLocalError

Raised when trying to access a local variable in a function or method but

no value has been assigned to it.

Computer Programming using Python: by Haridas Kataria

65

19
EnvironmentError

Base class for all exceptions that occur outside the Python environment.

20
IOError

Raised when an input/ output operation fails, such as the print

statement or the open() function when trying to open a file that does not

exist.

21
IOError

Raised for operating system-related errors.

22
SyntaxError

Raised when there is an error in Python syntax.

23
IndentationError

Raised when indentation is not specified properly.

24
SystemError

Raised when the interpreter finds an internal problem, but when this

error is encountered the Python interpreter does not exit.

25
SystemExit

Raised when Python interpreter is quit by using the sys.exit() function. If

not handled in the code, causes the interpreter to exit.

26
TypeError

Raised when an operation or function is attempted that is invalid for the

specified data type.

27
ValueError

Computer Programming using Python: by Haridas Kataria

66

Raised when the built-in function for a data type has the valid type of

arguments, but the arguments have invalid values specified.

28
RuntimeError

Raised when a generated error does not fall into any category.

29
NotImplementedError

Raised when an abstract method that needs to be implemented in an

inherited class is not actually implemented.

Assertions in Python

An assertion is a sanity-check that you can turn on or turn off when you are

done with your testing of the program.

The easiest way to think of an assertion is to liken it to a raise-if statement

(or to be more accurate, a raise-if-not statement). An expression is tested,

and if the result comes up false, an exception is raised.

Assertions are carried out by the assert statement, the newest keyword to

Python, introduced in version 1.5.

Programmers often place assertions at the start of a function to check for

valid input, and after a function call to check for valid output.

The assert Statement

When it encounters an assert statement, Python evaluates the

accompanying expression, which is hopefully true. If the expression is false,

Python raises an AssertionError exception.

The syntax for assert is −

assert Expression[, Arguments]

If the assertion fails, Python uses ArgumentExpression as the argument for

the AssertionError. AssertionError exceptions can be caught and handled

like any other exception using the try-except statement, but if not handled,

they will terminate the program and produce a traceback.

Example

Computer Programming using Python: by Haridas Kataria

67

Here is a function that converts a temperature from degrees Kelvin to

degrees Fahrenheit. Since zero degrees Kelvin is as cold as it gets, the

function bails out if it sees a negative temperature −

 Live Demo

#!/usr/bin/python

def KelvinToFahrenheit(Temperature):

 assert (Temperature >= 0),"Colder than absolute zero!"

 return ((Temperature-273)*1.8)+32

print KelvinToFahrenheit(273)

print int(KelvinToFahrenheit(505.78))

print KelvinToFahrenheit(-5)

When the above code is executed, it produces the following result −

32.0
451
Traceback (most recent call last):
File "test.py", line 9, in <module>
print KelvinToFahrenheit(-5)
File "test.py", line 4, in KelvinToFahrenheit
assert (Temperature >= 0),"Colder than absolute zero!"
AssertionError: Colder than absolute zero!

What is Exception?
An exception is an event, which occurs during the execution of a program

that disrupts the normal flow of the program's instructions. In general,

when a Python script encounters a situation that it cannot cope with, it

raises an exception. An exception is a Python object that represents an

error.

When a Python script raises an exception, it must either handle the

exception immediately otherwise it terminates and quits.

Handling an exception
If you have some suspicious code that may raise an exception, you can

defend your program by placing the suspicious code in a try: block. After

the try: block, include an except: statement, followed by a block of code

which handles the problem as elegantly as possible.

http://tpcg.io/fBXCk7

Computer Programming using Python: by Haridas Kataria

68

Syntax

Here is simple syntax of try....except...else blocks −

try:
 You do your operations here;

except ExceptionI:
 If there is ExceptionI, then execute this block.
except ExceptionII:
 If there is ExceptionII, then execute this block.

else:
 If there is no exception then execute this block.

Here are few important points about the above-mentioned syntax −

• A single try statement can have multiple except statements. This is useful when

the try block contains statements that may throw different types of exceptions.

• You can also provide a generic except clause, which handles any exception.

• After the except clause(s), you can include an else-clause. The code in the else-

block executes if the code in the try: block does not raise an exception.

• The else-block is a good place for code that does not need the try: block's

protection.

Example

This example opens a file, writes content in the, file and comes out

gracefully because there is no problem at all −

 Live Demo

#!/usr/bin/python

try:

 fh = open("testfile", "w")

 fh.write("This is my test file for exception handling!!")

except IOError:

 print "Error: can\'t find file or read data"

else:

 print "Written content in the file successfully"

http://tpcg.io/wDwtP9

Computer Programming using Python: by Haridas Kataria

69

 fh.close()

This produces the following result −

Written content in the file successfully

Example

This example tries to open a file where you do not have write permission,

so it raises an exception −

 Live Demo

#!/usr/bin/python

try:

 fh = open("testfile", "r")

 fh.write("This is my test file for exception handling!!")

except IOError:

 print "Error: can\'t find file or read data"

else:

 print "Written content in the file successfully"

This produces the following result −

Error: can't find file or read data

The except Clause with No Exceptions
You can also use the except statement with no exceptions defined as

follows −

try:
 You do your operations here;

except:
 If there is any exception, then execute this block.

else:
 If there is no exception then execute this block.

This kind of a try-except statement catches all the exceptions that occur.

Using this kind of try-except statement is not considered a good

programming practice though, because it catches all exceptions but does

http://tpcg.io/guvZfU

Computer Programming using Python: by Haridas Kataria

70

not make the programmer identify the root cause of the problem that may

occur.

The except Clause with Multiple Exceptions
You can also use the same except statement to handle multiple exceptions

as follows −

try:

 You do your operations here;

except(Exception1[, Exception2[,...ExceptionN]]]):

 If there is any exception from the given exception list,

 then execute this block.

else:

 If there is no exception then execute this block.

The try-finally Clause
You can use a finally: block along with a try: block. The finally block is a

place to put any code that must execute, whether the try-block raised an

exception or not. The syntax of the try-finally statement is this −

try:

 You do your operations here;

 Due to any exception, this may be skipped.

finally:

 This would always be executed.

You cannot use else clause as well along with a finally clause.

Example

Computer Programming using Python: by Haridas Kataria

71

 Live Demo

#!/usr/bin/python

try:

 fh = open("testfile", "w")

 fh.write("This is my test file for exception handling!!")

finally:

 print "Error: can\'t find file or read data"

If you do not have permission to open the file in writing mode, then this will

produce the following result −

Error: can't find file or read data

Same example can be written more cleanly as follows −

 Live Demo

#!/usr/bin/python

try:

 fh = open("testfile", "w")

 try:

 fh.write("This is my test file for exception handling!!")

 finally:

 print "Going to close the file"

 fh.close()

except IOError:

 print "Error: can\'t find file or read data"

When an exception is thrown in the try block, the execution immediately

passes to the finally block. After all the statements in the finally block are

executed, the exception is raised again and is handled in

http://tpcg.io/Pfq1qs
http://tpcg.io/5p1Wkr

Computer Programming using Python: by Haridas Kataria

72

the exceptstatements if present in the next higher layer of the try-

except statement.

Argument of an Exception
An exception can have an argument, which is a value that gives additional

information about the problem. The contents of the argument vary by

exception. You capture an exception's argument by supplying a variable in

the except clause as follows −

try:

 You do your operations here;

except ExceptionType, Argument:

 You can print value of Argument here...

If you write the code to handle a single exception, you can have a variable

follow the name of the exception in the except statement. If you are

trapping multiple exceptions, you can have a variable follow the tuple of the

exception.

This variable receives the value of the exception mostly containing the

cause of the exception. The variable can receive a single value or multiple

values in the form of a tuple. This tuple usually contains the error string,

the error number, and an error location.

Example

Following is an example for a single exception −

 Live Demo

#!/usr/bin/python

Define a function here.

def temp_convert(var):

 try:

 return int(var)

http://tpcg.io/Zr1ck8

Computer Programming using Python: by Haridas Kataria

73

 except ValueError, Argument:

 print "The argument does not contain numbers\n", Argument

Call above function here.

temp_convert("xyz");

This produces the following result −

The argument does not contain numbers
invalid literal for int() with base 10: 'xyz'

Raising an Exceptions
You can raise exceptions in several ways by using the raise statement. The

general syntax for the raise statement is as follows.

Syntax
raise [Exception [, args [, traceback]]]

Here, Exception is the type of exception (for example, NameError)

and argument is a value for the exception argument. The argument is

optional; if not supplied, the exception argument is None.

The final argument, traceback, is also optional (and rarely used in practice),

and if present, is the traceback object used for the exception.

Example

An exception can be a string, a class or an object. Most of the exceptions

that the Python core raises are classes, with an argument that is an

instance of the class. Defining new exceptions is quite easy and can be done

as follows −

def functionName(level):

 if level < 1:

 raise "Invalid level!", level

 # The code below to this would not be executed

 # if we raise the exception

Computer Programming using Python: by Haridas Kataria

74

Note: In order to catch an exception, an "except" clause must refer to the

same exception thrown either class object or simple string. For example, to

capture above exception, we must write the except clause as follows −

try:

 Business Logic here...

except "Invalid level!":

 Exception handling here...

else:

 Rest of the code here...

User-Defined Exceptions
Python also allows you to create your own exceptions by deriving classes

from the standard built-in exceptions.

Here is an example related to RuntimeError. Here, a class is created that is

subclassed from RuntimeError. This is useful when you need to display

more specific information when an exception is caught.

In the try block, the user-defined exception is raised and caught in the

except block. The variable e is used to create an instance of the

class Networkerror.

class Networkerror(RuntimeError):

 def __init__(self, arg):

 self.args = arg

So once you defined above class, you can raise the exception as follows −

try:

 raise Networkerror("Bad hostname")

except Networkerror,e:

 print e.args

Computer Programming using Python: by Haridas Kataria

75

Python Data Types

Data type defines the type of the variable, whether it is an integer variable, string
variable, tuple, dictionary, list etc. In this guide, you will learn about the data
types and their usage in Python.

Python data types

Python data types are divided in two categories, mutable data types and
immutable data types.

Immutable Data types in Python
1. Numeric
2. String
3. Tuple

Mutable Data types in Python
1. List
2. Dictionary
3. Set

1. Numeric Data Type in Python

Integer – In Python 3, there is no upper bound on the integer number which
means we can have the value as large as our system memory allows.

Integer number
num = 100
print(num)
print("Data Type of variable num is", type(num))

Output:

Computer Programming using Python: by Haridas Kataria

76

Long – Long data type is deprecated in Python 3 because there is no need for it,
since the integer has no upper limit, there is no point in having a data type that
allows larger upper limit than integers.

Float – Values with decimal points are the float values, there is no need to
specify the data type in Python. It is automatically inferred based on the value we
are assigning to a variable. For example here fnum is a float data type.

float number
fnum = 34.45
print(fnum)
print("Data Type of variable fnum is", type(fnum))

Output:

Complex Number – Numbers with real and imaginary parts are known as
complex numbers. Unlike other programming language such as Java, Python is
able to identify these complex numbers with the values. In the following example
when we print the type of the variable cnum, it prints as complex number.

complex number
cnum = 3 + 4j
print(cnum)
print("Data Type of variable cnum is", type(cnum))

Binary, Octal and Hexadecimal numbers

In Python we can print decimal equivalent of binary, octal and hexadecimal
numbers using the prefixes.
0b(zero + ‘b’) and 0B(zero + ‘B’) – Binary Number
0o(zero + ‘o’) and 0O(zero + ‘O’) – Octal Number
0x(zero + ‘x’) and 0X(zero + ‘X’) – Hexadecimal Number

integer equivalent of binary number 101
num = 0b101
print(num)

Computer Programming using Python: by Haridas Kataria

77

integer equivalent of Octal number 32
num2 = 0o32
print(num2)

integer equivalent of Hexadecimal number FF
num3 = 0xFF
print(num3)

2. Python Data Type – String

String is a sequence of characters in Python. The data type of String in Python is
called “str”.

Strings in Python are either enclosed with single quotes or double quotes. In the
following example we have demonstrated two strings one with the double quotes
and other string s2 with the single quotes. To read more about strings, refer this
article: Python Strings.

Python program to print strings and type

s = "This is a String"
s2 = 'This is also a String'

displaying string s and its type
print(s)
print(type(s))

displaying string s2 and its type
print(s2)
print(type(s2))

3. Python Data Type – Tuple

Tuple is immutable data type in Python which means it cannot be changed. It is
an ordered collection of elements enclosed in round brackets and separated by
commas. To read more about tuple, refer this tutorial: Python tuple.

tuple of integers
t1 = (1, 2, 3, 4, 5)
prints entire tuple
print(t1)

tuple of strings
t2 = ("hi", "hello", "bye")
loop through tuple elements
for s in t2:

https://beginnersbook.com/2018/02/python-strings/
https://beginnersbook.com/2018/02/python-tuple/

Computer Programming using Python: by Haridas Kataria

78

 print (s)

tuple of mixed type elements
t3 = (2, "Lucy", 45, "Steve")
'''
Print a specific element
indexes start with zero
'''
print(t3[2])

4. Python Data Type – List

List is similar to tuple, it is also an ordered collection of elements, however list is
a mutable data type which means it can be changed unlike tuple which is an
immutable data type.

A list is enclosed with square brackets and elements are separated by commas.
To read more about Lists, refer this guide: Python Lists

list of integers
lis1 = (1, 2, 3, 4, 5)
prints entire list
print(lis1)

list of strings
lis2 = ("Apple", "Orange", "Banana")
loop through tuple elements
for x in lis2:
 print (x)

List of mixed type elements
lis3 = (20, "Chaitanya", 15, "BeginnersBook")
'''
Print a specific element in list
indexes start with zero
'''
print("Element at index 3 is:",lis3[3])

5. Python Data Type – Dictionary

Dictionary is a collection of key and value pairs. A dictionary doesn’t allow
duplicate keys but the values can be duplicate. It is an ordered, indexed and
mutable collection of elements. To read more about it refer: Python dictionary.

https://beginnersbook.com/2018/02/python-list/
https://beginnersbook.com/2019/03/python-dictionary/

Computer Programming using Python: by Haridas Kataria

79

The keys in a dictionary doesn’t necessarily to be a single data type, as you can
see in the following example that we have 1 integer key and two string keys.

Dictionary example

dict = {1:"Chaitanya","lastname":"Singh", "age":31}

prints the value where key value is 1
print(dict[1])
prints the value where key value is "lastname"
print(dict["lastname"])
prints the value where key value is "age"
print(dict["age"])

6. Python Data Type – Set

A set is an unordered and unindexed collection of items. This means when we
print the elements of a set they will appear in the random order and we cannot
access the elements of set based on indexes because it is unindexed.

Elements of set are separated by commas and enclosed in curly braces. Lets
take an example to understand the sets in Python.

Set Example
myset = {"hi", 2, "bye", "Hello World"}

loop through set
for a in myset:
 print(a)

checking whether 2 exists in myset
print(2 in myset)

adding new element
myset.add(99)
print(myset)

Python If Statement explained with

examples

BY CHAITANYA SINGH | FILED UNDER: PYTHON TUTORIAL

https://beginnersbook.com/2019/03/python-sets/
https://beginnersbook.com/category/python-tutorial/

Computer Programming using Python: by Haridas Kataria

80

If statements are control flow statements which helps us to run a particular code
only when a certain condition is satisfied. For example, you want to print a
message on the screen only when a condition is true then you can use if
statement to accomplish this in programming. In this guide, we will learn how to
use if statements in Python programming with the help of examples.

There are other control flow statements available in Python such as if..else,
if..elif..else,
nested if etc. However in this guide, we will only cover the if statements, other
control statements are covered in separate tutorials.

Syntax of If statement in Python

The syntax of if statement in Python is pretty simple.

if condition:
 block_of_code

If statement flow diagram

Python – If statement Example

flag = True
if flag==True:
 print("Welcome")
 print("To")
 print("BeginnersBook.com")

Output:

Welcome
To
BeginnersBook.com

Computer Programming using Python: by Haridas Kataria

81

In the above example we are checking the value of flag variable and if the value
is True then we are executing few print statements. The important point to note
here is that even if we do not compare the value of flag with the ‘True’ and simply
put ‘flag’ in place of condition, the code would run just fine so the better way to
write the above code would be:

flag = True
if flag:
 print("Welcome")
 print("To")
 print("BeginnersBook.com")

By seeing this we can understand how if statement works. The output of the
condition would either be true or false. If the outcome of condition is true then the
statements inside body of ‘if’ executes, however if the outcome of condition is
false then the statements inside ‘if’ are skipped. Lets take another example to
understand this:

flag = False
if flag:
 print("You Guys")
 print("are")
 print("Awesome")

The output of this code is none, it does not print anything because the outcome
of condition is ‘false’.

Python if example without boolean variables

In the above examples, we have used the boolean variables in place of
conditions. However we can use any variables in our conditions. For example:

num = 100
if num < 200:
 print("num is less than 200")

Output:

num is less than 200

Python If else Statement Example

In the last tutorial we learned how to use if statements in Python. In this guide,
we will learn another control statement ‘if..else’.

https://beginnersbook.com/2018/01/python-if-statement-example/

Computer Programming using Python: by Haridas Kataria

82

We use if statements when we need to execute a certain block of Python code
when a particular condition is true. If..else statements are like extension of ‘if’
statements, with the help of if..else we can execute certain statements if
condition is true and a different set of statements if condition is false. For
example, you want to print ‘even number’ if the number is even and ‘odd number’
if the number is not even, we can accomplish this with the help of if..else
statement.

Python – Syntax of if..else statement

if condition:
 block_of_code_1
else:
 block_of_code_2

block_of_code_1: This would execute if the given condition is true
block_of_code_2: This would execute if the given condition is false

If..else flow control

If-else example in Python

num = 22
if num % 2 == 0:
 print("Even Number")
else:
 print("Odd Number")

Output:

Even Number

Computer Programming using Python: by Haridas Kataria

83

Python If elif else statement example

In the previous tutorials we have seen if statement and if..else statement. In this
tutorial, we will learn if elif else statement in Python. The if..elif..else statement
is used when we need to check multiple conditions.

Syntax of if elif else statement in Python

This way we are checking multiple conditions.

if condition:
 block_of_code_1
elif condition_2:
 block_of_code_2
elif condition_3:
 block_of_code_3
..
..
..
else:
 block_of_code_n

Notes:
1. There can be multiple ‘elif’ blocks, however there is only ‘else’ block is allowed.
2. Out of all these blocks only one block_of_code gets executed. If the condition
is true then the code inside ‘if’ gets executed, if condition is false then the next
condition(associated with elif) is evaluated and so on. If none of the conditions is
true then the code inside ‘else’ gets executed.

Python – if..elif..else statement example

In this example, we are checking multiple conditions using if..elif..else
statement.

num = 1122
if 9 < num < 99:
 print("Two digit number")
elif 99 < num < 999:
 print("Three digit number")
elif 999 < num < 9999:
 print("Four digit number")
else:
 print("number is <= 9 or >= 9999")

https://beginnersbook.com/2018/01/python-if-statement-example/
https://beginnersbook.com/2018/01/python-if-else-statement/

Computer Programming using Python: by Haridas Kataria

84

Python Nested If else statement

In the previous tutorials, we have covered the if statement, if..else
statement and if..elif..else statement. In this tutorial, we will learn the nesting of
these control statements.

When there is an if statement (or if..else or if..elif..else) is present inside another
if statement (or if..else or if..elif..else) then this is calling the nesting of control
statements.

Nested if..else statement example

Here we have a if statement inside another if..else statement block. Nesting
control statements makes us to check multiple conditions.

num = -99
if num > 0:
 print("Positive Number")
else:
 print("Negative Number")
 #nested if
 if -99<=num:
 print("Two digit Negative Number")

Output:

Negative Number
Two digit Negative Number

Python for Loop explained with examples

A loop is a used for iterating over a set of statements repeatedly. In Python we
have three types of loops for, while and do-while. In this guide, we will learn for
loop and the other two loops are covered in the separate tutorials.

Syntax of For loop in Python

for <variable> in <sequence>:
 # body_of_loop that has set of statements
 # which requires repeated execution

https://beginnersbook.com/2018/01/python-if-statement-example/
https://beginnersbook.com/2018/01/python-if-else-statement/
https://beginnersbook.com/2018/01/python-if-else-statement/
https://beginnersbook.com/2018/01/python-if-elif-else/

Computer Programming using Python: by Haridas Kataria

85

Here <variable> is a variable that is used for iterating over a <sequence>. On
every iteration it takes the next value from <sequence> until the end of
sequence is reached.

Lets take few examples of for loop to understand the usage.

Python – For loop example

The following example shows the use of for loop to iterate over a list of numbers.
In the body of for loop we are calculating the square of each number present in
list and displaying the same.

Program to print squares of all numbers present in a list

List of integer numbers
numbers = [1, 2, 4, 6, 11, 20]

variable to store the square of each num temporary
sq = 0

iterating over the given list
for val in numbers:
 # calculating square of each number
 sq = val * val
 # displaying the squares
 print(sq)

Output:

1
4
16
36
121
400

Function range()

In the above example, we have iterated over a list using for loop. However we
can also use a range() function in for loop to iterate over numbers defined by
range().

range(n): generates a set of whole numbers starting from 0 to (n-1).
For example:
range(8) is equivalent to [0, 1, 2, 3, 4, 5, 6, 7]

Computer Programming using Python: by Haridas Kataria

86

range(start, stop): generates a set of whole numbers starting from start to stop-1.
For example:
range(5, 9) is equivalent to [5, 6, 7, 8]

range(start, stop, step_size): The default step_size is 1 which is why when we
didn’t specify the step_size, the numbers generated are having difference of 1.
However by specifying step_size we can generate numbers having the difference
of step_size.
For example:
range(1, 10, 2) is equivalent to [1, 3, 5, 7, 9]

Lets use the range() function in for loop:

Python for loop example using range() function

Here we are using range() function to calculate and display the sum of first 5
natural numbers.

Program to print the sum of first 5 natural numbers

variable to store the sum
sum = 0

iterating over natural numbers using range()
for val in range(1, 6):
 # calculating sum
 sum = sum + val

displaying sum of first 5 natural numbers
print(sum)

Output:

15

For loop with else block

Unlike Java, In Python we can have an optional ‘else’ block associated with the
loop. The ‘else’ block executes only when the loop has completed all the
iterations. Lets take an example:

for val in range(5):
 print(val)
else:
 print("The loop has completed execution")

Output:

https://beginnersbook.com/2015/03/for-loop-in-java-with-example/

Computer Programming using Python: by Haridas Kataria

87

0
1
2
3
4
The loop has completed execution

Note: The else block only executes when the loop is finished.

Nested For loop in Python

When a for loop is present inside another for loop then it is called a nested for
loop. Lets take an example of nested for loop.

for num1 in range(3):
 for num2 in range(10, 14):
 print(num1, ",", num2)

Output:

0 , 10
0 , 11
0 , 12
0 , 13
1 , 10
1 , 11
1 , 12
1 , 13
2 , 10
2 , 11
2 , 12
2 , 13

Python While Loop

While loop is used to iterate over a block of code repeatedly until a given
condition returns false. In the last tutorial, we have seen for loop in Python, which
is also used for the same purpose. The main difference is that we use while
loop when we are not certain of the number of times the loop requires execution,
on the other hand when we exactly know how many times we need to run the
loop, we use for loop.

Syntax of while loop

while condition:
 #body_of_while

https://beginnersbook.com/2018/01/python-for-loop/

Computer Programming using Python: by Haridas Kataria

88

The body_of_while is set of Python statements which requires repeated
execution. These set of statements execute repeatedly until the given condition
returns false.

Flow of while loop

1. First the given condition is checked, if the condition returns false, the loop is
terminated and the control jumps to the next statement in the program after the
loop.
2. If the condition returns true, the set of statements inside loop are executed and
then the control jumps to the beginning of the loop for next iteration.

These two steps happen repeatedly as long as the condition specified in while
loop remains true.

Python – While loop example

Here is an example of while loop. In this example, we have a variable num and we
are displaying the value of num in a loop, the loop has a increment operation
where we are increasing the value of num. This is very important step, the while
loop must have a increment or decrement operation, else the loop will run
indefinitely, we will cover this later in infinite while loop.

num = 1
loop will repeat itself as long as
num < 10 remains true
while num < 10:
 print(num)
 #incrementing the value of num
 num = num + 3

Output:

1
4
7

Infinite while loop

Example 1:
This will print the word ‘hello’ indefinitely because the condition will always be
true.

while True:
 print("hello")

Computer Programming using Python: by Haridas Kataria

89

Example 2:

num = 1
while num<5:
 print(num)

This will print ‘1’ indefinitely because inside loop we are not updating the value of
num, so the value of num will always remain 1 and the condition num < 5 will
always return true.

Nested while loop in Python

When a while loop is present inside another while loop then it is called nested
while loop. Lets take an example to understand this concept.

i = 1
j = 5
while i < 4:
 while j < 8:
 print(i, ",", j)
 j = j + 1
 i = i + 1

Output:

1 , 5
2 , 6
3 , 7

Python – while loop with else block

We can have a ‘else’ block associated with while loop. The ‘else’ block is
optional. It executes only after the loop finished execution.

num = 10
while num > 6:
 print(num)
 num = num-1
else:
 print("loop is finished")

Output:

10
9
8
7
loop is finished

Computer Programming using Python: by Haridas Kataria

90

Python break Statement

The break statement is used to terminate the loop when a certain condition is
met. We already learned in previous tutorials (for loop and while loop) that a loop
is used to iterate a set of statements repeatedly as long as the loop
condition returns true. The break statement is generally used inside a loop
along with a if statement so that when a particular condition (defined in if
statement) returns true, the break statement is encountered and the loop
terminates.

For example, lets say we are searching an element in a list, so for that we are
running a loop starting from the first element of the list to the last element of the
list. Using break statement, we can terminate the loop as soon as the element is
found because why run the loop unnecessary till the end of list when our element
is found. We can achieve this with the help of break statement (we will see this
example programmatically in the example section below).

Syntax of break statement in Python

The syntax of break statement in Python is similar to what we have seen
in Java.

break

Flow diagram of break

Example of break statement

In this example, we are searching a number ’88’ in the given list of numbers. The
requirement is to display all the numbers till the number ’88’ is found and when it
is found, terminate the loop and do not display the rest of the numbers.

https://beginnersbook.com/2018/01/python-for-loop/
https://beginnersbook.com/2018/01/python-while-loop/
https://beginnersbook.com/2018/01/python-if-statement-example/
https://beginnersbook.com/2017/08/java-break-statement/

Computer Programming using Python: by Haridas Kataria

91

program to display all the elements before number 88
for num in [11, 9, 88, 10, 90, 3, 19]:
 print(num)
 if(num==88):
 print("The number 88 is found")
 print("Terminating the loop")
 break

Output:

11
9
88
The number 88 is found
Terminating the loop

Note: You would always want to use the break statement with a if statement so
that only when the condition associated with ‘if’ is true then only break is
encountered. If you do not use it with ‘if’ statement then the break statement
would be encountered in the first iteration of loop and the loop would always
terminate on the first iteration.

Python Continue Statement

The continue statement is used inside a loop to skip the rest of the statements
in the body of loop for the current iteration and jump to the beginning of the loop
for next iteration. The break and continue statements are used to alter the flow of
loop, break terminates the loop when a condition is met and continue skip the
current iteration.

Syntax of continue statement in Python

The syntax of continue statement in Python is similar to what we have seen
in Java(except the semicolon)

continue

Flow diagram of continue

https://beginnersbook.com/2018/01/python-break-statement/
https://beginnersbook.com/2017/08/java-continue-statement/

Computer Programming using Python: by Haridas Kataria

92

Example of continue statement

Lets say we have a list of numbers and we want to print only the odd numbers
out of that list. We can do this by using continue statement.
We are skipping the print statement inside loop by using continue statement
when the number is even, this way all the even numbers are skipped and the
print statement executed for all the odd numbers.

program to display only odd numbers
for num in [20, 11, 9, 66, 4, 89, 44]:
 # Skipping the iteration when number is even
 if num%2 == 0:
 continue
 # This statement will be skipped for all even numbers
 print(num)

Output:

11
9
89

Python pass Statement

The pass statement acts as a placeholder and usually used when there is no
need of code but a statement is still required to make a code syntactically
correct. For example we want to declare a function in our code but we want to
implement that function in future, which means we are not yet ready to write the
body of the function. In this case we cannot leave the body of function empty as
this would raise error because it is syntactically incorrect, in such cases we can
use pass statement which does nothing but makes the code syntactically
correct.

Computer Programming using Python: by Haridas Kataria

93

Pass statement vs comment

You may be wondering that a python comment works similar to the pass
statement as it does nothing so we can use comment in place of pass statement.
Well, it is not the case, a comment is not a placeholder and it is completely
ignored by the Python interpreter while on the other hand pass is not ignored by
interpreter, it says the interpreter to do nothing.

Python pass statement example

If the number is even we are doing nothing and if it is odd then we are displaying
the number.

for num in [20, 11, 9, 66, 4, 89, 44]:
 if num%2 == 0:
 pass
 else:
 print(num)

Output:

11
9
89

Other examples:

A function that does nothing(yet), may be implemented in future.

def f(arg): pass # a function that does nothing (yet)

A class that does not have any methods(yet), may have methods in future
implementation.

class C: pass # a class with no methods (yet)

Reference

Python docs – pass statement

https://beginnersbook.com/2018/01/python-comments/
https://docs.python.org/3/reference/simple_stmts.html#pass

Computer Programming using Python: by Haridas Kataria

94

Python Functions

In this guide, we will learn about functions in Python. A function is a block of
code that contains one or more Python statements and used for performing a
specific task.

Why use function in Python?

As I mentioned above, a function is a block of code that performs a specific task.
Lets discuss what we can achieve in Python by using functions in our code:
1. Code re-usability: Lets say we are writing an application in Python where we
need to perform a specific task in several places of our code, assume that we
need to write 10 lines of code to do that specific task. It would be better to write
those 10 lines of code in a function and just call the function wherever needed,
because writing those 10 lines every time you perform that task is tedious, it
would make your code lengthy, less-readable and increase the chances of
human errors.

2. Improves Readability: By using functions for frequent tasks you make your
code structured and readable. It would be easier for anyone to look at the code
and be able to understand the flow and purpose of the code.

3. Avoid redundancy: When you no longer repeat the same lines of code
throughout the code and use functions in places of those, you actually avoiding
the redundancy that you may have created by not using functions.

Syntax of functions in Python

Function declaration:

def function_name(function_parameters):
 function_body # Set of Python statements
 return # optional return statement

Calling the function:

when function doesn't return anything
function_name(parameters)

OR

when function returns something
variable is to store the returned value

Computer Programming using Python: by Haridas Kataria

95

variable = function_name(parameters)

Python Function example

Here we have a function add() that adds two numbers passed to it as parameters.
Later after function declaration we are calling the function twice in our program to
perform the addition.

def add(num1, num2):
 return num1 + num2

sum1 = add(100, 200)
sum2 = add(8, 9)
print(sum1)
print(sum2)

Output:

300
17

Default arguments in Function

Now that we know how to declare and call a function, lets see how can we use
the default arguments. By using default arguments we can avoid the errors that
may arise while calling a function without passing all the parameters. Lets take
an example to understand this:

In this example we have provided the default argument for the second
parameter, this default argument would be used when we do not provide the
second parameter while calling this function.

default argument for second parameter
def add(num1, num2=1):
 return num1 + num2

sum1 = add(100, 200)
sum2 = add(8) # used default argument for second param
sum3 = add(100) # used default argument for second param
print(sum1)
print(sum2)
print(sum3)

Output:

300
9
101

Computer Programming using Python: by Haridas Kataria

96

Types of functions

There are two types of functions in Python:
1. Built-in functions: These functions are predefined in Python and we need not
to declare these functions before calling them. We can freely invoke them as and
when needed.
2. User defined functions: The functions which we create in our code are user-
defined functions. The add() function that we have created in above examples is
a user-defined function.

We will cover more about these function types in the separate guides.

Python Recursion

A function is said to be a recursive if it calls itself. For example, lets say we have
a function abc()and in the body of abc() there is a call to the abc().

Python example of Recursion

In this example we are defining a user-defined function factorial(). This function
finds the factorial of a number by calling itself repeatedly until the base case(We
will discuss more about base case later, after this example) is reached.

Example of recursion in Python to
find the factorial of a given number

def factorial(num):
 """This function calls itself to find
 the factorial of a number"""

 if num == 1:
 return 1
 else:
 return (num * factorial(num - 1))

num = 5
print("Factorial of", num, "is: ", factorial(num))

Output:

Factorial of 5 is: 120

Lets see what happens in the above example:

https://beginnersbook.com/2018/01/python-functions/

Computer Programming using Python: by Haridas Kataria

97

factorial(5) returns 5 * factorial(5-1)
 i.e. 5 * factorial(4)
 |__5*4*factorial(3)
 |__5*4*3*factorial(2)
 |__5*4*3*2*factorial(1)

Note: factorial(1) is a base case for which we already know the value of factorial.
The base case is defined in the body of function with this code:

if num == 1:
 return 1

What is a base case in recursion

When working with recursion, we should define a base case for which we already
know the answer. In the above example we are finding factorial of an integer
number and we already know that the factorial of 1 is 1 so this is our base case.

Each successive recursive call to the function should bring it closer to the base
case, which is exactly what we are doing in above example.

We use base case in recursive function so that the function stops calling itself
when the base case is reached. Without the base case, the function would keep
calling itself indefinitely.

Why use recursion in programming?

We use recursion to break a big problem in small problems and those small
problems into further smaller problems and so on. At the end the solutions of all
the smaller subproblems are collectively helps in finding the solution of the big
main problem.

Advantages of recursion

Recursion makes our program:
1. Easier to write.
2. Readable – Code is easier to read and understand.
3. Reduce the lines of code – It takes less lines of code to solve a problem using
recursion.

Disadvantages of recursion

Computer Programming using Python: by Haridas Kataria

98

1. Not all problems can be solved using recursion.
2. If you don’t define the base case then the code would run indefinitely.
3. Debugging is difficult in recursive functions as the function is calling itself in a
loop and it is hard to understand which call is causing the issue.
4. Memory overhead – Call to the recursive function is not memory efficient.

Python Numbers

In this guide, we will see how to work with numbers in Python. Python supports
integers, floats and complex numbers.

An integer is a number without decimal point for example 5, 6, 10 etc.

A float is a number with decimal point for example 6.7, 6.0, 10.99 etc.

A complex number has a real and imaginary part for example 7+8j, 8+11j etc.

Example: Numbers in Python

Python program to display numbers of
different data types

int
num1 = 10
num2 = 100
print(num1+num2)

float
a = 10.5
b = 8.9
print(a-b)

complex numbers
x = 3 + 4j
y = 9 + 8j
print(y-x)

Output:

110
1.5999999999999996
(6+4j)

Python example to find the class(data type) of a
number

Computer Programming using Python: by Haridas Kataria

99

We can use the type() function to find out the class of a number. An integer
number belongs to intclass, a float number belongs to float class and a complex
number belongs to complex class.

program to find the class of a number

int
num = 100
print("type of num: ",type(num))

float
num2 = 10.99
print("type of num2: ",type(num2))

complex numbers
num3 = 3 + 4j
print("type of num3: ",type(num3))

Output:

The isinstance() function

The isinstance() functions checks whether a number belongs to a particular class
and returns true or false based on the result.
For example:
isinstance(num, int) will return true if the number num is an integer number.
isinstance(num, int) will return false if the number num is not an integer number.

Computer Programming using Python: by Haridas Kataria

100

Example of isinstance() function

num = 100
true because num is an integer
print(isinstance(num, int))

false because num is not a float
print(isinstance(num, float))

false because num is not a complex number
print(isinstance(num, complex))

Output:

True
False
False

Python List with examples

In this guide, we will discuss lists in Python. A list is a data type that allows you
to store various types data in it. List is a compound data type which means you
can have different-2 data types under a list, for example we can have integer,
float and string items in a same list.

1. Create a List in Python

Lets see how to create a list in Python. To create a list all you have to do is to
place the items inside a square bracket [] separated by comma ,.

list of floats
num_list = [11.22, 9.9, 78.34, 12.0]

list of int, float and strings
mix_list = [1.13, 2, 5, "beginnersbook", 100, "hi"]

an empty list
nodata_list = []

As we have seen above, a list can have data items of same type or different
types. This is the reason list comes under compound data type.

2. Accessing the items of a list

Syntax to access the list items:

Computer Programming using Python: by Haridas Kataria

101

list_name[index]

Example:

a list of numbers
numbers = [11, 22, 33, 100, 200, 300]

prints 11
print(numbers[0])

prints 300
print(numbers[5])

prints 22
print(numbers[1])

Output:

11
300
22

Points to Note:
1. The index cannot be a float number.
For example:

a list of numbers
numbers = [11, 22, 33, 100, 200, 300]

error
print(numbers[1.0])

Output:

TypeError: list indices must be integers or slices, not float

2. The index must be in range to avoid IndexError. The range of the index of a list
having 10 elements is 0 to 9, if we go beyond 9 then we will get IndexError.
However if we go below 0 then it would not cause issue in certain cases, we will
discuss that in our next section.
For example:

a list of numbers
numbers = [11, 22, 33, 100, 200, 300]

error
print(numbers[6])

Output:

IndexError: list index out of range

Computer Programming using Python: by Haridas Kataria

102

3. Negative Index to access the list items from the
end

Unlike other programming languages where negative index may cause issue,
Python allows you to use negative indexes. The idea behind this to allow you to
access the list elements starting from the end. For example an index of -1 would
access the last element of the list, -2 second last, -3 third last and so on.

3.1 Example of Negative indexes in Python

a list of strings
my_list = ["hello", "world", "hi", "bye"]

prints "bye"
print(my_list[-1])

prints "world"
print(my_list[-3])

prints "hello"
print(my_list[-4])

Output:

bye
world
hello

4. How to get a sublist in Python using slicing

We can get a sublist from a list in Python using slicing operation. Lets say we
have a list n_listhaving 10 elements, then we can slice this list using
colon : operator. Lets take an example to understand this:

4.1 Slicing example

list of numbers
n_list = [1, 2, 3, 4, 5, 6, 7]

list items from 2nd to 3rd
print(n_list[1:3])

list items from beginning to 3rd
print(n_list[:3])

list items from 4th to end of list
print(n_list[3:])

Computer Programming using Python: by Haridas Kataria

103

Whole list
print(n_list[:])

Output:

[2, 3]
[1, 2, 3]
[4, 5, 6, 7]
[1, 2, 3, 4, 5, 6, 7]

5. List Operations

There are various operations that we can perform on Lists.

5.1 Addition

There are several ways you can add elements to a list.

list of numbers
n_list = [1, 2, 3, 4]

1. adding item at the desired location
adding element 100 at the fourth location
n_list.insert(3, 100)

list: [1, 2, 3, 100, 4]
print(n_list)

2. adding element at the end of the list
n_list.append(99)

list: [1, 2, 3, 100, 4, 99]
print(n_list)

3. adding several elements at the end of list
the following statement can also be written like this:
n_list + [11, 22]
n_list.extend([11, 22])

list: [1, 2, 3, 100, 4, 99, 11, 22]
print(n_list)

Output:

[1, 2, 3, 100, 4]
[1, 2, 3, 100, 4, 99]
[1, 2, 3, 100, 4, 99, 11, 22]

5.2 Update elements

Computer Programming using Python: by Haridas Kataria

104

We can change the values of elements in a List. Lets take an example to
understand this:

list of numbers
n_list = [1, 2, 3, 4]

Changing the value of 3rd item
n_list[2] = 100

list: [1, 2, 100, 4]
print(n_list)

Changing the values of 2nd to fourth items
n_list[1:4] = [11, 22, 33]

list: [1, 11, 22, 33]
print(n_list)

Output:

[1, 2, 100, 4]
[1, 11, 22, 33]

5.3 Delete elements

list of numbers
n_list = [1, 2, 3, 4, 5, 6]

Deleting 2nd element
del n_list[1]

list: [1, 3, 4, 5, 6]
print(n_list)

Deleting elements from 3rd to 4th
del n_list[2:4]

list: [1, 3, 6]
print(n_list)

Deleting the whole list
del n_list

Output:

[1, 3, 4, 5, 6]
[1, 3, 6]

5.4 Deleting elements using remove(), pop() and clear()
methods

Computer Programming using Python: by Haridas Kataria

105

remove(item): Removes specified item from list.
pop(index): Removes the element from the given index.
pop(): Removes the last element.
clear(): Removes all the elements from the list.

list of chars
ch_list = ['A', 'F', 'B', 'Z', 'O', 'L']

Deleting the element with value 'B'
ch_list.remove('B')

list: ['A', 'F', 'Z', 'O', 'L']
print(ch_list)

Deleting 2nd element
ch_list.pop(1)

list: ['A', 'Z', 'O', 'L']
print(ch_list)

Deleting all the elements
ch_list.clear()

list: []
print(ch_list)

Output:

['A', 'F', 'Z', 'O', 'L']
['A', 'Z', 'O', 'L']
[]

Python Strings

A string is usually a bit of text (sequence of characters). In Python we use ”
(double quotes) or ‘ (single quotes) to represent a string. In this guide we will see
how to create, access, use and manipulate strings in Python programming
language.

1. How to create a String in Python

There are several ways to create strings in Python.
1. We can use ‘ (single quotes), see the string str in the following code.
2. We can use ” (double quotes), see the string str2 in the source code below.
3. Triple double quotes “”” and triple single quotes ”’ are used for creating multi-
line strings in Python. See the strings str3 and str4 in the following example.

Computer Programming using Python: by Haridas Kataria

106

lets see the ways to create strings in Python
str = 'beginnersbook'
print(str)

str2 = "Chaitanya"
print(str2)

multi-line string
str3 = """Welcome to
 Beginnersbook.com"""
print(str3)

str4 = '''This is a tech
 blog'''
print(str4)

Output:

beginnersbook
Chaitanya
Welcome to
 Beginnersbook.com
This is a tech
 blog

2. How to access strings in Python

A string is nothing but an array of characters so we can use the indexes to
access the characters of a it. Just like arrays, the indexes start from 0 to the
length-1.

You will get IndexError if you try to access the character which is not in the
range. For example,
if a string is of length 6 and you try to access the 8th char of it then you will get
this error.

You will get TypeError if you do not use integers as indexes, for example if you
use a float as an index then you will get this error.

str = "Kevin"

displaying whole string
print(str)

displaying first character of string
print(str[0])

displaying third character of string
print(str[2])

Computer Programming using Python: by Haridas Kataria

107

displaying the last character of the string
print(str[-1])

displaying the second last char of string
print(str[-2])

Output:

Kevin
K
v
n
i

3. Python String Operations

Lets see the operations that can be performed on the strings.

3.1. Getting a substring in Python – Slicing
operation

We can slice a string to get a substring out of it. To understand the concept
of slicing we must understand the positive and negative indexes in Python (see
the example above to understand this). Lets take a look at the few examples of
slicing.

str = "Beginnersbook"

displaying whole string
print("The original string is: ", str)

slicing 10th to the last character
print("str[9:]: ", str[9:])

slicing 3rd to 6th character
print("str[2:6]: ", str[2:6])

slicing from start to the 9th character
print("str[:9]: ", str[:9])

slicing from 10th to second last character
print("str[9:-1]: ", str[9:-1])

Output:

The original string is: Beginnersbook
str[9:]: book
str[2:6]: ginn
str[:9]: Beginners
str[9:-1]: boo

Computer Programming using Python: by Haridas Kataria

108

3.2 Concatenation of strings in Python

The + operator is used for string concatenation in Python. Lets take an
example to understand this:

str1 = "One"
str2 = "Two"
str3 = "Three"

Concatenation of three strings
print(str1 + str2 + str3)

Output:

OneTwoThree

Note: When + operator is used on numbers it adds them but when it used on
strings it concatenates them. However if you try to use this between string and
number then it will throw TypeError.

For example:

s = "one"
n = 2
print(s+n)

Output:

TypeError: must be str, not int

3.3 Repetition of string – Replication operator

We can use * operator to repeat a string by specified number of times.

str = "ABC"

repeating the string str by 3 times
print(str*3)

Output:

ABCABCABC

3.4 Python Membership Operators in Strings

in: This checks whether a string is present in another string or not. It returns true
if the entire string is found else it returns false.
not in: It works just opposite to what “in” operator does. It returns true if the string
is not found in the specified string else it returns false.

Computer Programming using Python: by Haridas Kataria

109

str = "Welcome to beginnersbook.com"
str2 = "Welcome"
str3 = "Chaitanya"
str4 = "XYZ"

str2 is in str? True
print(str2 in str)

str3 is in str? False
print(str3 in str)

str4 not in str? True
print(str4 not in str)

Output:

True
False
True

3.5 Python – Relational Operators on Strings

The relational operators works on strings based on the ASCII values of
characters.
The ASCII value of a is 97, b is 98 and so on.
The ASCII value of A is 65, B is 66 and so on.

str = "ABC"
str2 = "aBC"
str3 = "XYZ"
str4 = "XYz"

ASCII value of str2 is > str? True
print(str2 > str)

ASCII value of str3 is > str4? False
print(str3 > str4)

Output:

True
False

Python Tuple with example

In Python, a tuple is similar to List except that the objects in tuple are immutable
which means we cannot change the elements of a tuple once assigned. On the
other hand, we can change the elements of a list.

1. Tuple vs List

https://beginnersbook.com/2018/02/python-list/

Computer Programming using Python: by Haridas Kataria

110

1. The elements of a list are mutable whereas the elements of a tuple are
immutable.
2. When we do not want to change the data over time, the tuple is a preferred
data type whereas when we need to change the data in future, list would be a
wise option.
3. Iterating over the elements of a tuple is faster compared to iterating over
a list.
4. Elements of a tuple are enclosed in parenthesis whereas the elements
of list are enclosed in square bracket.

2. How to create a tuple in Python

To create a tuple in Python, place all the elements in a () parenthesis, separated
by commas. A tuple can have heterogeneous data items, a tuple can have string
and list as data items as well.

2.1 Example – Creating tuple

In this example, we are creating few tuples. We can have tuple of same type of
data items as well as mixed type of data items. This example also shows nested
tuple (tuples as data items in another tuple).

tuple of strings
my_data = ("hi", "hello", "bye")
print(my_data)

tuple of int, float, string
my_data2 = (1, 2.8, "Hello World")
print(my_data2)

tuple of string and list
my_data3 = ("Book", [1, 2, 3])
print(my_data3)

tuples inside another tuple
nested tuple
my_data4 = ((2, 3, 4), (1, 2, "hi"))
print(my_data4)

Output:

('hi', 'hello', 'bye')
(1, 2.8, 'Hello World')
('Book', [1, 2, 3])
((2, 3, 4), (1, 2, 'hi'))

Computer Programming using Python: by Haridas Kataria

111

2.2 Empty tuple:

empty tuple
my_data = ()

2.3 Tuple with only single element:

Note: When a tuple has only one element, we must put a comma after the
element, otherwise Python will not treat it as a tuple.

a tuple with single data item
my_data = (99,)

If we do not put comma after 99 in the above example then python will treat
my_data as an int variable rather than a tuple.

3. How to access tuple elements

We use indexes to access the elements of a tuple. Lets take few example to
understand the working.

3.1 Accessing tuple elements using positive indexes

We can also have negative indexes in tuple, we have discussed that in the next
section. Indexes starts with 0 that is why we use 0 to access the first element of
tuple, 1 to access second element and so on.

tuple of strings
my_data = ("hi", "hello", "bye")

displaying all elements
print(my_data)

accessing first element
prints "hi"
print(my_data[0])

accessing third element
prints "bye"
print(my_data[2])

Output:

('hi', 'hello', 'bye')
hi
bye

Computer Programming using Python: by Haridas Kataria

112

Note:
1. TypeError: If you do not use integer indexes in the tuple. For example
my_data[2.0] will raise this error. The index must always be an integer.
2. IndexError: Index out of range. This error occurs when we mention the index
which is not in the range. For example, if a tuple has 5 elements and we try to
access the 7th element then this error would occurr.

3.2 Negative indexes in tuples

Similar to list and strings we can use negative indexes to access the tuple
elements from the end.
-1 to access last element, -2 to access second last and so on.

my_data = (1, 2, "Kevin", 8.9)

accessing last element
prints 8.9
print(my_data[-1])

prints 2
print(my_data[-3])

Output:

8.9
2

3.3 Accessing elements from nested tuples

Lets understand how the double indexes are used to access the elements of
nested tuple. The first index represents the element of main tuple and the second
index represent the element of the nested tuple.

In the following example, when I used my_data[2][1], it accessed the second
element of the nested tuple. Because 2 represented the third element of main
tuple which is a tuple and the 1 represented the second element of that tuple.

my_data = (1, "Steve", (11, 22, 33))

prints 'v'
print(my_data[1][3])

prints 22
print(my_data[2][1])

Output:

https://beginnersbook.com/2018/02/python-list/
https://beginnersbook.com/2018/02/python-strings/

Computer Programming using Python: by Haridas Kataria

113

v
22

4. Operations that can be performed on tuple in
Python

Lets see the operations that can be performed on the tuples in Python.

4.1 Changing the elements of a tuple

We cannot change the elements of a tuple because elements of tuple are
immutable. However we can change the elements of nested items that are
mutable. For example, in the following code, we are changing the element of the
list which is present inside the tuple. List items are mutable that’s why it is
allowed.

my_data = (1, [9, 8, 7], "World")
print(my_data)

changing the element of the list
this is valid because list is mutable
my_data[1][2] = 99
print(my_data)

changing the element of tuple
This is not valid since tuple elements are immutable
TypeError: 'tuple' object does not support item assignment
my_data[0] = 101
print(my_data)

Output:

(1, [9, 8, 7], 'World')
(1, [9, 8, 99], 'World')

4.2 Delete operation on tuple

We already discussed above that tuple elements are immutable which also
means that we cannot delete the elements of a tuple. However deleting entire
tuple is possible.

my_data = (1, 2, 3, 4, 5, 6)
print(my_data)

not possible
error
del my_data[2]

Computer Programming using Python: by Haridas Kataria

114

deleting entire tuple is possible
del my_data

not possible
error
because my_data is deleted
print(my_data)

Output:

(1, 2, 3, 4, 5, 6)

4.3 Slicing operation in tuples

my_data = (11, 22, 33, 44, 55, 66, 77, 88, 99)
print(my_data)

elements from 3rd to 5th
prints (33, 44, 55)
print(my_data[2:5])

elements from start to 4th
prints (11, 22, 33, 44)
print(my_data[:4])

elements from 5th to end
prints (55, 66, 77, 88, 99)
print(my_data[4:])

elements from 5th to second last
prints (55, 66, 77, 88)
print(my_data[4:-1])

displaying entire tuple
print(my_data[:])

Output:

(11, 22, 33, 44, 55, 66, 77, 88, 99)
(33, 44, 55)
(11, 22, 33, 44)
(55, 66, 77, 88, 99)
(55, 66, 77, 88)
(11, 22, 33, 44, 55, 66, 77, 88, 99)

4.4 Membership Test in Tuples

in: Checks whether an element exists in the specified tuple.
not in: Checks whether an element does not exist in the specified tuple.

my_data = (11, 22, 33, 44, 55, 66, 77, 88, 99)
print(my_data)

Computer Programming using Python: by Haridas Kataria

115

true
print(22 in my_data)

false
print(2 in my_data)

false
print(88 not in my_data)

true
print(101 not in my_data)

Output:

(11, 22, 33, 44, 55, 66, 77, 88, 99)
True
False
False
True

4.5 Iterating a tuple

tuple of fruits
my_tuple = ("Apple", "Orange", "Grapes", "Banana")

iterating over tuple elements
for fruit in my_tuple:
 print(fruit)

Output:

Apple
Orange
Grapes
Banana

Python Dictionary with examples

Dictionary is a mutable data type in Python. A python dictionary is a collection of
key and value pairs separated by a colon (:), enclosed in curly braces {}.

Python Dictionary

Here we have a dictionary. Left side of the colon(:) is the key and right side of the
: is the value.

mydict = {'StuName': 'Ajeet', 'StuAge': 30, 'StuCity': 'Agra'}

Computer Programming using Python: by Haridas Kataria

116

Points to Note:
1. Keys must be unique in dictionary, duplicate values are allowed.
2. A dictionary is said to be empty if it has no key value pairs. An empty
dictionary is denoted like this: {}.
3. The keys of dictionary must be of immutable data types such as String,
numbers or tuples.

Accessing dictionary values using keys in Python

To access a value we can can use the corresponding key in the square brackets
as shown in the following example. Dictionary name followed by square brackets
and in the brackets we specify the key for which we want the value.

mydict = {'StuName': 'Ajeet', 'StuAge': 30, 'StuCity': 'Agra'}
print("Student Age is:", mydict['StuAge'])
print("Student City is:", mydict['StuCity'])

Output:

If you specify a key which doesn’t exist in the dictionary then you will get a
compilation error. For example. Here we are trying to access the value for key
‘StuClass’ which does not exist in the dictionary mydict, thus we get a compilation
error when we run this code.

mydict = {'StuName': 'Ajeet', 'StuAge': 30, 'StuCity': 'Agra'}
print("Student Age is:", mydict['StuClass'])
print("Student City is:", mydict['StuCity'])

Output:

Computer Programming using Python: by Haridas Kataria

117

Change values in Dictionary

Here we are updating the values for the existing key-value pairs. To update a
value in dictionary we are using the corresponding key.

mydict = {'StuName': 'Ajeet', 'StuAge': 30, 'StuCity': 'Agra'}
print("Student Age before update is:", mydict['StuAge'])
print("Student City before update is:", mydict['StuCity'])
mydict['StuAge'] = 31
mydict['StuCity'] = 'Noida'
print("Student Age after update is:", mydict['StuAge'])
print("Student City after update is:", mydict['StuCity'])

Output:

Adding a new entry (key-value pair) in dictionary

We can also add a new key-value pair in an existing dictionary. Lets take an
example to understand this.

mydict = {'StuName': 'Steve', 'StuAge': 4, 'StuCity': 'Agra'}
mydict['StuClass'] = 'Jr.KG'
print("Student Name is:", mydict['StuName'])
print("Student Class is:", mydict['StuClass'])

Output:

Loop through a dictionary

Computer Programming using Python: by Haridas Kataria

118

We can loop through a dictionary as shown in the following example. Here we
are using for loop.

mydict = {'StuName': 'Steve', 'StuAge': 4, 'StuCity': 'Agra'}
for e in mydict:
 print("Key:",e,"Value:",mydict[e])

Output:

Python delete operation on dictionary

We can delete key-value pairs as well as entire dictionary in python. Lets take an
example. As you can see we can use del following by dictionary name and in
square brackets we can specify the key to delete the specified key value pair
from dictionary.

To delete all the entries (all key-value pairs) from dictionary we can use the
clear() method.

To delete entire dictionary along with all the data use del keyword followed by
dictionary name as shown in the following example.

mydict = {'StuName': 'Steve', 'StuAge': 4, 'StuCity': 'Agra'}
del mydict['StuCity']; # remove entry with key 'StuCity'
mydict.clear(); # remove all key-value pairs from mydict
del mydict ; # delete entire dictionary mydict

Python Sets

BY CHAITANYA SINGH | FILED UNDER: PYTHON TUTORIAL

Set is an unordered and unindexed collection of items in Python. Unordered
means when we display the elements of a set, it will come out in a random order.

https://beginnersbook.com/2018/01/python-for-loop/
https://beginnersbook.com/category/python-tutorial/

Computer Programming using Python: by Haridas Kataria

119

Unindexed means, we cannot access the elements of a set using the indexes like
we can do in list and tuples.

The elements of a set are defined inside square brackets and are separated by
commas. For example –

myset = [1, 2, 3, 4, "hello"]

Python Set Example

Set Example
myset = {"hi", 2, "bye", "Hello World"}
print(myset)

Checking whether an item is in the set

We can check whether an item exists in Set or not using “in” operator as shown
in the following example. This returns the boolean value true or false. If the item
is in the given set then it returns true, else it returns false.

Set Example
myset = {"hi", 2, "bye", "Hello World"}

checking whether 2 is in myset
print(2 in myset)

checking whether "hi" is in myset
print("hi" in myset)

checking whether "BeginnersBook" is in myset
print("BeginnersBook" in myset)

Loop through the elements of a Set in Python

We can loop through the elements of a set in Python as shown in the following
elements. As you can see in the output that the elements will appear in random
order each time you run the code.

Set Example
myset = {"hi", 2, "bye", "Hello World"}

loop through the elements of myset
for a in myset:
 print(a)

https://beginnersbook.com/2018/02/python-list/
https://beginnersbook.com/2018/02/python-tuple/

Computer Programming using Python: by Haridas Kataria

120

Python – Add or remove item from a Set

We can add an item in a Set using add() function and we can remove an item
from a set using remove() function as shown in the following example.

Set Example
myset = {"hi", 2, "bye", "Hello World"}
print("Original Set:", myset)

adding an item
myset.add(99)
print("Set after adding 99:", myset)

removing an item
myset.remove("bye")
print("Set after removing bye:", myset)

Set Methods

1. add(): This method adds an element to the Set.
2. remove(): This method removes a specified element from the Set
3. discard(): This method works same as remove() method, however it doesn’t
raise an error when the specified element doesn’t exist.
4. clear(): Removes all the elements from the set.
5. copy(): Returns a shallow copy of the set.
6. difference(): This method returns a new set which is a difference between two
given sets.
7. difference_update(): Updates the calling set with the Set difference of two
given sets.
8. intersection(): Returns a new set which contains the elements that are
common to all the sets.
9. intersection_update(): Updates the calling set with the Set intersection of two
given sets.
10. isdisjoint(): Checks whether two sets are disjoint or not. Two sets are disjoint
if they have no common elements.
11. issubset(): Checks whether a set is a subset of another given set.
12. pop(): Removes and returns a random element from the set.
13. union(): Returns a new set with the distinct elements of all the sets.
14. update(): Adds elements to a set from other passed iterable.
15. symmetric_difference(): Returns a new set which is a symmetric difference of
two given sets.
16. symmetric_difference_update(): Updates the calling set with the symmetric
difference of two given sets.

https://beginnersbook.com/2019/03/python-set-add-method/
https://beginnersbook.com/2019/03/python-set-remove-method/
https://beginnersbook.com/2019/03/python-set-discard-method/
https://beginnersbook.com/2019/03/python-set-clear-method/
https://beginnersbook.com/2019/03/python-set-copy-method/
https://beginnersbook.com/2019/03/python-set-difference-method/
https://beginnersbook.com/2019/03/python-set-difference_update-method/
https://beginnersbook.com/2019/03/python-set-intersection-method/
https://beginnersbook.com/2019/03/python-set-intersection_update/
https://beginnersbook.com/2019/04/python-set-isdisjoint-method/
https://beginnersbook.com/2019/04/python-set-issubset-method/
https://beginnersbook.com/2019/04/python-set-pop-method/
https://beginnersbook.com/2019/04/python-set-union-method/
https://beginnersbook.com/2019/04/python-set-update-method/
https://beginnersbook.com/2019/04/python-set-symmetric_difference-method/
https://beginnersbook.com/2019/04/python-set-symmetric_difference_update-method/

Computer Programming using Python: by Haridas Kataria

121

Python OOPs Concepts

Python is an object-oriented programming language. What this means is we
can solve a problem in Python by creating objects in our programs. In this guide,
we will discuss OOPs terms such as class, objects, methods etc. along with the
Object oriented programming features such
as inheritance, polymorphism, abstraction, encapsulation.

Object

An object is an entity that has attributes and behaviour. For example, Ram is an
object who has attributes such as height, weight, color etc. and has certain
behaviours such as walking, talking, eating etc.

Class

A class is a blueprint for the objects. For example, Ram, Shyam, Steve, Rick are
all objects so we can define a template (blueprint) class Human for these objects.
The class can define the common attributes and behaviours of all the objects.

Methods

As we discussed above, an object has attributes and behaviours. These
behaviours are called methods in programming.

Example of Class and Objects

In this example, we have two objects Ram and Steve that belong to the class Human
Object attributes: name, height, weight
Object behaviour: eating()

Source code

class Human:
 # instance attributes
 def __init__(self, name, height, weight):
 self.name = name
 self.height = height
 self.weight = weight

 # instance methods (behaviours)

Computer Programming using Python: by Haridas Kataria

122

 def eating(self, food):
 return "{} is eating {}".format(self.name, food)

creating objects of class Human
ram = Human("Ram", 6, 60)
steve = Human("Steve", 5.9, 56)

accessing object information
print("Height of {} is {}".format(ram.name, ram.height))
print("Weight of {} is {}".format(ram.name, ram.weight))
print(ram.eating("Pizza"))
print("Weight of {} is {}".format(steve.name, steve.height))
print("Weight of {} is {}".format(steve.name, steve.weight))
print(steve.eating("Big Kahuna Burger"))

Output:

Height of Ram is 6
Weight of Ram is 60
Ram is eating Pizza
Weight of Steve is 5.9
Weight of Steve is 56
Steve is eating Big Kahuna Burger

How to create Class and Objects in Python

In the previous guide, we discussed Object-oriented programming in Python. In
this tutorial, we will see how to create classes and objects in Python.

Define class in Python

A class is defined using the keyword class.

Example

In this example, we are creating an empty class DemoClass. This class has no
attributes and methods.

The string that we mention in the triple quotes is a docstring which is an optional
string that briefly explains the purpose of the class.

class DemoClass:
 """This is my docstring, this explains brief about the class"""

this prints the docstring of the class

https://beginnersbook.com/2018/03/python-oops-concepts/

Computer Programming using Python: by Haridas Kataria

123

print(DemoClass.__doc__)

Output:

This is my docstring, this explains brief about the class

Creating Objects of class

In this example, we have a class MyNewClass that has an attribute num and a
function hello(). We are creating an object obj of the class and accessing the
attribute value of object and calling the method hello() using the object.

class MyNewClass:
 """This class demonstrates the creation of objects"""

 # instance attribute
 num = 100

 # instance method
 def hello(self):
 print("Hello World!")

creating object of MyNewClass
obj = MyNewClass()

prints attribute value
print(obj.num)

calling method hello()
obj.hello()

prints docstring
print(MyNewClass.__doc__)

Output:

100
Hello World!
This class demonstrates the creation of objects

Python Constructors – default and

parameterized

A constructor is a special kind of method which is used for initializing the instance
variables during object creation. In this guide, we will see what is a constructor,
types of it and how to use them in the python programming with examples.

1. What is a Constructor in Python?

Computer Programming using Python: by Haridas Kataria

124

Constructor is used for initializing the instance members when we create the
object of a class.

For example:
Here we have a instance variable num which we are initializing in the constructor.
The constructor is being invoked when we create the object of the class (obj in
the following example).

class DemoClass:
 # constructor
 def __init__(self):
 # initializing instance variable
 self.num=100

 # a method
 def read_number(self):
 print(self.num)

creating object of the class. This invokes constructor
obj = DemoClass()

calling the instance method using the object obj
obj.read_number()

Output:

100

1.1 Syntax of constructor declaration

As we have seen in the above example that a constructor always has a
name init and the name init is prefixed and suffixed with a double underscore(__).
We declare a constructor using def keyword, just like methods.

def __init__(self):
 # body of the constructor

2. Types of constructors in Python

We have two types of constructors in Python.
1. default constructor – this is the one, which we have seen in the above
example. This constructor doesn’t accept any arguments.
2. parameterized constructor – constructor with parameters is known as
parameterized constructor.

2.1 Python – default constructor example

Computer Programming using Python: by Haridas Kataria

125

Note: An object cannot be created if we don’t have a constructor in our program.
This is why when we do not declare a constructor in our program, python does it
for us. Lets have a look at the example below.

Example: When we do not declare a constructor
In this example, we do not have a constructor but still we are able to create an
object for the class. This is because there is a default constructor implicitly
injected by python during program compilation, this is an empty default
constructor that looks like this:

def __init__(self):
 # no body, does nothing.

Source Code:

class DemoClass:
 num = 101

 # a method
 def read_number(self):
 print(self.num)

creating object of the class
obj = DemoClass()

calling the instance method using the object obj
obj.read_number()

Output:

101

Example: When we declare a constructor
In this case, python does not create a constructor in our program.

class DemoClass:
 num = 101

 # non-parameterized constructor
 def __init__(self):
 self.num = 999

 # a method
 def read_number(self):
 print(self.num)

creating object of the class
obj = DemoClass()

Computer Programming using Python: by Haridas Kataria

126

calling the instance method using the object obj
obj.read_number()

Output:

999

2.2 Python – Parameterized constructor example

When we declare a constructor in such a way that it accepts the arguments
during object creation then such type of constructors are known as
Parameterized constructors. As you can see that with such type of constructors
we can pass the values (data) during object creation, which is used by the
constructor to initialize the instance members of that object.

class DemoClass:
 num = 101

 # parameterized constructor
 def __init__(self, data):
 self.num = data

 # a method
 def read_number(self):
 print(self.num)

creating object of the class
this will invoke parameterized constructor
obj = DemoClass(55)

calling the instance method using the object obj
obj.read_number()

creating another object of the class
obj2 = DemoClass(66)

calling the instance method using the object obj
obj2.read_number()

Output:

Python Classes and Methods

Python is an “object-oriented programming language.” This means that almost all the code is
implemented using a special construct called classes. Programmers use classes to keep related
things together. This is done using the keyword “class,” which is a grouping of object-oriented
constructs.

Computer Programming using Python: by Haridas Kataria

127

By the end of this tutorial you will be able to:

1. Define what is a class
2. Describe how to create a class
3. Define what is a method
4. Describe how to do object instantiation
5. Describe how to create instance attributes in Python

What is a class?

A class is a code template for creating objects. Objects have member variables and have behaviour
associated with them. In python a class is created by the keyword class.

An object is created using the constructor of the class. This object will then be called
the instance of the class. In Python we create instances in the following manner

Instance = class(arguments)

How to create a class

The simplest class can be created using the class keyword. For example, let's create a simple,
empty class with no functionalities.

>>> class Snake:

... pass

...

>>> snake = Snake()

>>> print(snake)

<__main__.Snake object at 0x7f315c573550>

Attributes and Methods in class:

A class by itself is of no use unless there is some functionality associated with it. Functionalities are
defined by setting attributes, which act as containers for data and functions related to those
attributes. Those functions are called methods.

Attributes:

You can define the following class with the name Snake. This class will have an attribute name.

>>> class Snake:

... name = "python" # set an attribute `name` of the class

...

Computer Programming using Python: by Haridas Kataria

128

You can assign the class to a variable. This is called object instantiation. You will then be able to
access the attributes that are present inside the class using the dot . operator. For example, in the

Snake example, you can access the attribute name of the class Snake.

>>> # instantiate the class Snake and assign it to variable snake

>>> snake = Snake()

>>> # access the class attribute name inside the class Snake.

>>> print(snake.name)

python

Methods

Once there are attributes that “belong” to the class, you can define functions that will access the
class attribute. These functions are called methods. When you define methods, you will need to
always provide the first argument to the method with a self keyword.

For example, you can define a class Snake, which has one attribute name and one

method change_name. The method change name will take in an argument new_name along with the

keyword self.

>>> class Snake:

... name = "python"

...

... def change_name(self, new_name): # note that the first argument is

self

... self.name = new_name # access the class attribute with the self

keyword

...

Now, you can instantiate this class Snake with a variable snake and then change the name with the

method change_name.

>>> # instantiate the class

>>> snake = Snake()

>>> # print the current object name

>>> print(snake.name)

python

>>> # change the name using the change_name method

>>> snake.change_name("anaconda")

>>> print(snake.name)

anaconda

Instance attributes in python and the init method

Computer Programming using Python: by Haridas Kataria

129

You can also provide the values for the attributes at runtime. This is done by defining the attributes
inside the init method. The following example illustrates this.

class Snake:

 def __init__(self, name):

 self.name = name

 def change_name(self, new_name):

 self.name = new_name

Now you can directly define separate attribute values for separate objects. For example,

>>> # two variables are instantiated

>>> python = Snake("python")

>>> anaconda = Snake("anaconda")

>>> # print the names of the two variables

>>> print(python.name)

python

>>> print(anaconda.name)

anaconda

Python classes and object object-oriented
programming II

Classes are written to organize and structure code into meaningful blocks, which can then be used
to implement the business logic. These implementations are used in such a way that more complex
parts are abstracted away to provide for simpler interfaces which can then be used to build even
simpler blocks. While doing this we will find that there are lots of times when we will need to
establish relationships between the classes that we build. These relationships can then be
established using either inheritance or composition. At this point it is best you take a look at our
[Python Classes tutorial][1] to get in-depth knowledge on how classes are written in Python. Also, in
case you are already doing object oriented programming in some other language, you may want to
check out our notes on design patterns.

In this tutorial you will get to know how to build relationships between classes using inheritance and
composition and the syntax that is needed.

Python inheritance

What is Inheritance

In inheritance an object is based on another object. When inheritance is implemented, the methods
and attributes that were defined in the base class will also be present in the inherited class. This is

https://www.hackerearth.com/practice/notes/design-patterns-1/

Computer Programming using Python: by Haridas Kataria

130

generally done to abstract away similar code in multiple classes. The abstracted code will reside in
the base class and the previous classes will now inherit from the base class.

How to achieve Inheritance in Python

Python allows the classes to inherit commonly used attributes and methods from other classes
through inheritance. We can define a base class in the following manner:

class DerivedClassName(BaseClassName):

 pass

Let's look at an example of inheritance. In the following example, Rocket is the base class and
MarsRover is the inherited class.

class Rocket:

 def __init__(self, name, distance):

 self.name = name

 self.distance = distance

 def launch(self):

 return "%s has reached %s" % (self.name, self.distance)

class MarsRover(Rocket): # inheriting from the base class

 def __init__(self, name, distance, maker):

 Rocket.__init__(self, name, distance)

 self.maker = maker

 def get_maker(self):

 return "%s Launched by %s" % (self.name, self.maker)

if __name__ == "__main__":

 x = Rocket("simple rocket", "till stratosphere")

 y = MarsRover("mars_rover", "till Mars", "ISRO")

 print(x.launch())

 print(y.launch())

 print(y.get_maker())

The output of the code above is shown below:

➜ Documents python rockets.py
simple rocket has reached till stratosphere

mars_rover has reached till Mars

mars_rover Launched by ISRO

Python Composition:

Computer Programming using Python: by Haridas Kataria

131

What is composition

In composition, we do not inherit from the base class but establish relationships between classes
through the use of instance variables that are references to other objects. Talking in terms of
pseudocode you may say that

class GenericClass:

 define some attributes and methods

class ASpecificClass:

 Instance_variable_of_generic_class = GenericClass

use this instance somewhere in the class

 some_method(Instance_variable_of_generic_class)

So you will instantiate the base class and then use the instance variable for any business logic.

How to achieve composition in Python

To achieve composition you can instantiate other objects in the class and then use those instances.
For example in the below example we instantiate the Rocket class using self.rocket and then

using self.rocket in the method get_maker.

class MarsRoverComp():

 def __init__(self, name, distance, maker):

 self.rocket = Rocket(name, distance) # instantiating the base

 self.maker = maker

 def get_maker(self):

 return "%s Launched by %s" % (self.rocket.name, self.maker)

if __name__ == "__main__":

 z = MarsRover("mars_rover2", "till Mars", "ISRO")

 print(z.launch())

 print(z.get_maker())

The output of the total code which has both inheritance and composition is shown below:

➜ Documents python rockets.py
simple rocket has reached till stratosphere

mars_rover has reached till Mars

mars_rover Launched by ISRO

mars_rover2 has reached till Mars

mars_rover2 Launched by ISRO

Computer Programming using Python: by Haridas Kataria

132

Errors and Exceptions in Python

Errors are problems in the program that the program should not recover from. If at any point in the
program an error occurs, then the program should exit gracefully. On the other hand, Exceptions are
raised when an external event occurs which in some way changes the normal flow of the program.

In this tutorial you will learn about common types of Errors and Exceptions in Python and common
paradigms in handling them.

Handling Exceptions with Try/Except/Finally

Errors and Exceptions in Python are handled with the Try: Except: Finally construct. You put

the unsafe code in the try: block. You put the fall-back code in the Except: block. The final code

is kept in the Finally: block.

For example, look at the code below.

>>> try:

... print("in the try block")

... print(1/0)

... except:

... print("In the except block")

... finally:

... print("In the finally block")

...

in the try block

In the except block

In the finally block

Raising exceptions for a predefined condition

Exceptions can also be raised if you want the code to behave within specific parameters. For
example, if you want to limit the user-input to only positive integers, raise an exception.

exc.py

while True:

 try:

 user = int(input())

 if user < 0:

 raise ValueError("please give positive number")

 else:

 print("user input: %s" % user)

except ValueError as e:

 print(e)

So the output of the above program is:

Computer Programming using Python: by Haridas Kataria

133

➜ python exc.py
4

user input: 4

3

user input: 3

2

user input: 2

1

user input: 1

-1

please give positive number

5

user input: 5

2

user input: 2

-5

please give positive number

^C

Traceback (most recent call last):

File "exc.py", line 3, in <module>

 user = int(input())

KeyboardInterrupt

Python Iterators, generators, and the for loop

Iterators are containers for objects so that you can loop over the objects. In other words, you can run
the "for" loop over the object. There are many iterators in the Python standard library. For example,
list is an iterator and you can run a for loop over a list.

>>> for lib in popular_python_libs:

... print(lib)

...

requests

scrapy

pillow

SQLAlchemy

NumPy

In this tutorial you will get to know:

1. How to create a custom iterator
2. How to create a generator
3. How to run for loops on iterators and generators

Python Iterators and the Iterator protocol

To create a Python iterator object, you will need to implement two methods in your iterator class.

Computer Programming using Python: by Haridas Kataria

134

__iter__: This returns the iterator object itself and is used while using the "for" and "in" keywords.

__next__: This returns the next value. This would return the StopIteration error once all the objects

have been looped through.

Let us create a cool emoticon generator and l iterators.

iterator_example.py

"""

This should give an iterator with a emoticon.

"""

import random

class CoolEmoticonGenerator(object):

 """docstring for CoolEmoticonGenerator."""

 strings = "!@#$^*_-=+?/,.:;~"

 grouped_strings = [("(", ")"), ("<", ">"), ("[", "]"), ("{", "}")]

 def create_emoticon(self, grp):

 """actual method that creates the emoticon"""

 face_strings_list = [random.choice(self.strings) for _ in range(3)]

 face_strings = "".join(face_strings_list)

 emoticon = (grp[0], face_strings, grp[1])

 emoticon = "".join(emoticon)

 return emoticon

 def __iter__(self):

 """returns the self object to be accessed by the for loop"""

 return self

 def __next__(self):

 """returns the next emoticon indefinitely"""

 grp = random.choice(self.grouped_strings)

 return self.create_emoticon(grp)

Now you can call the above class as an iterator. Which means you can run the next function on it.

from iterator_example import CoolEmoticonGenerator

g = CoolEmoticonGenerator()

print([next(g) for _ in range(5)])

Running the program above gives us the following output. The exact output may be different from
what you get but it will be similar.

➜ python3.5 iterator_example.py
['<,~!>', '<;_~>', '<!;@>', '[~=#]', '{?^-}']

Computer Programming using Python: by Haridas Kataria

135

You can use the KeyboardInterrupt to stop the execution.

Python Generators

Python generator gives us an easier way to create python iterators. This is done by defining a
function but instead of the return statement returning from the function, use the "yield" keyword. For
example, see how you can get a simple vowel generator below.

>>> def vowels():

... yield "a"

... yield "e"

... yield "i"

... yield "o"

... yield "u"

...

>>> for i in vowels():

... print(i)

...

a

e

i

o

u

Now let's try and create the CoolEmoticonGenerator.

def create_emoticon_generator():

 while True:

 strings = "!@#$^*_-=+?/,.:;~"

 grouped_strings = [("(", ")"), ("<", ">"), ("[", "]"), ("{", "}")]

 grp = random.choice(grouped_strings)

 face_strings_list = [random.choice(strings) for _ in range(3)]

 face_strings = "".join(face_strings_list)

 emoticon = (grp[0], face_strings, grp[1])

 emoticon = "".join(emoticon)

 yield emoticon

Now, if you run the generator using the runner below

from iterator_example import CoolEmoticonGenerator

g = create_emoticon_generator()

print([next(g) for _ in range(5)])

You should get the following output

➜ python3.5 iterator_example.py
['(+~?)', '<**_>', '($?/)', '[#=+]', '{*=.}']

Computer Programming using Python: by Haridas Kataria

136

Functions

A function is a block of code that takes in some data and, either performs some kind of
transformation and returns the transformed data, or performs some task on the data, or both.
Functions are useful because they provide a high degree of modularity. Similar code can be easily
grouped into functions and you can provide a name to the function that describes what the function
is for. Functions are the simplest, and, sometimes the most useful, tool for writing modular code.

In this tutorial you will get to know:

• How to create a function
• How to call a function

How to create a function:

In Python to create a function, you need to write it in the following manner. Please note that the body
of the function is indented by 4 spaces.

def name_of_the_function(arguments):

 '''

 doctring of the function

 note that the function block is indented by 4 spaces

 '''

 body of the function

 return the return value or expression

You can look at the example below where a function returns the sum of two numbers.

def add_two_numbers(num1, num2):

 '''returns the sum of num1 and num2'''

 result = num1 + num2

 return result

Here are all the parts of the function:

Keyword def: This is the keyword used to say that a function will be defined now, and the next word

that is there, is the function name.

Function name: This is the name that is used to identify the function. The function name comes
after the defkeyword. Function names have to be a single word. PEP8, which is a style guide for

Python, recommends that in case multiple words are used, they should be in lowercase and they
should be separated with an underscore. In the example above, add_two_numbers is the parameter

name.

Computer Programming using Python: by Haridas Kataria

137

Parameter list: Parameter list are place holders that define the parameters that go into the function.
The parameters help to generalise the transformation/computation/task that is needed to be done. In
Python, parameters are enclosed in parentheses. In the example above, the parameters
are num1and num2. You can pass as many parameters as needed to a function.

Function docstrings: These are optional constructs that provide a convenient way for associated
documentation to the corresponding function. Docstrings are enclosed by triple quotes '''you
will write the docstring here'''

Function returns: Python functions returns a value. You can define what to return by
the return keyword. In the example above, the function returns result. In case you do not define

a return value, the function will return None.

How to call a function

Call a function with a return value

To call a function means that you are telling the program to execute the function. If there is a return
value defined, the function would return the value, else the function would return None. To call the
function, you write the name of the function followed by parentheses. In case you need to pass
parameters/arguments to the function, you write them inside the parentheses.

For example, if you had a function that added two numbers

def add_two_numbers(num1, num2):

 '''returns the sum of num1 and num2'''

 result = num1 + num2

 return result

You would call the function like this:

add_two_numbers(1, 2)

Note that arguments 1 and 2 have been passed. Hence, the return value will be 3. You can put any
two numbers in place of 1 and 2, and it will return the corresponding sum of the two numbers. But
calling a function and not doing anything with the result is meaningless, isn’t it? So you can now
assign it to a variable which may be used later on. In the following example, can just printing it.

>>> def add_two_numbers(num1, num2):

... '''returns the sum of num1 and num2'''

... result = num1 + num2

... return result

...

>>> # call the function add_two_numbers with arguments 4 and 5 and assign it

>>> # to a variable sum_of_4_and_5

>>> sum_of_4_and_5 = add_two_numbers(4, 5)

>>>

>>> # show the value stored in sum_of_4_and_5

Computer Programming using Python: by Haridas Kataria

138

>>> print(sum_of_4_and_5)

9

Call a function that performs a task and has no return value

In case the function is not meant to return anything and just performs some task, like committing
something to a database or changing the text of some button in the user interface, then you do not
need to assign the function to a variable. You can just call the function.

For example, if you had a function that prints a string

def printing_side_effects():

 '''a function with side effects'''

 print('this is a function with side effects and performs some task')

You can just call the function and it will get executed.

>>> printing_side_effects()

this is a function with side effects and performs some task

How to call a function with arguments

Note that in this case you pass parameters in the order in which they are supposed to be processed.
For example, if you had a function that duplicates a string by the number of times, where both the
string and the number needs to be provided by the function, such as:

>>> def string_multiplier(string_arg, number):

... '''takes the string_arg and multiplies it with one more than the

number'''

... return string_arg * (number + 1)

...

>>> # passing string_arg and number and in that order...

>>> print(string_multiplier('a', 5))aaaaaa

>>> # below code will return error as the arguments are not in order...

>>> print(string_multiplier(5, 'a'))Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<stdin>", line 3, in string_multiplier

TypeError: must be str, not int

Variables

Computer Programming using Python: by Haridas Kataria

139

A variable can be considered a storage container for data. Every variable will have a name. For
example, we can have a variable named speed_of_light. A variable is a good way to store

information while making it easy to refer to that information in our code later. A close analogy to
variables may be a named box where you can store information.

For instance, instead of working with the number 3.14, we can assign it to a variable pi. You may

forget that you need to use the number 3.14 when you will need to make relevant calculations later.
On the other hand, it will be easier for you to remember to call pi when writing the code.

In this tutorial, you will learn how to name a variable and assign values. You will take a closer look at
the methods that variables can support.

Assignment

In Python, assignment can be done by writing the variable name followed by the value separated by
an equal =symbol. The skeleton or pseudo-code is

“Variable name” = “ value or information ”

In the following examples, you assign various numbers and strings to variables.

>>> # assign the value 299792458 to the variable speed_of_light

>>> speed_of_light = 299792458

>>> print(speed_of_light)

299792458

>>> # assign a decimal number 3.14 to the variable pi

>>> pi = 3.14

>>> print(pi)

3.14

Computer Programming using Python: by Haridas Kataria

140

>>> # assign a string

>>> fav_lang = "python"

>>> print(fav_lang)

'python'

Valid and invalid ways of assigning variables

Multiple words Assignment only works when the variable is a single word.

>>> multiple word = "multiple word"

 File "<stdin>", line 1

 multiple word = "multiple word"

 ^

SyntaxError: invalid syntax

So, if you want to have more than one word in the name, the convention is to use underscore "_" in
the name.

>>> multiple_word = "multiple word" # note the variable name has an

underscore _

>>> print(multiple_word)

multiple word

Do not start with a number

You cannot start a variable name with a number. The rest of the variable name can contain a
number.

For example, 1var is wrong.

>>> 1var = 1

 File "<stdin>", line 1

 1var = 1

 ^

SyntaxError: invalid syntax

But var1 is fine.

>>> var1 = 1

>>> print(var1)

1

More points to remember while deciding a variable name

Computer Programming using Python: by Haridas Kataria

141

You can only include a-z, A-Z, _, and 0-9 in your variable names. Other special characters are not
permitted.

For example, you cannot have hash key # in your variable names.

>>> # a_var_containing_# will not work as it has # in the name

>>> a_var_containing_# = 1

 Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'a_var_containing_' is not defined

>>> # but if we remove the # then it works

>>> a_var_containing_ = 1

>>> print(a_var_containing_)

1

Interestingly, you can have a variable name in your local language.

 >>> 零 = 0 # chinese

>>> print(零)
0

 >>> ශුන්ය = 0 # sinhala

 >>> print(ශුන්ය)
 0

More on Assignments

Python supports assigning all data structures to variables.

For example, we can assign a list to a variable like you see in the following example, where we
assign the list of names, denoted by [...], to the variable fav_writers.

>>> # assigning list

>>> fav_writers = ["Mark Twain", "Fyodor Dostoyevsky"]

>>> print(fav_writers)

['Mark Twain', 'Fyodor Dostoyevsky']

Here is another example where you can assign dicts, shown by {...}, to a variable birthdays.

>>> # assign dicts

...

>>> birthdays = {"mom": "9Jan", "daughter": "24Dec"}

>>> print(birthdays)

{'mom': '9Jan', 'daughter': '24Dec'}

Computer Programming using Python: by Haridas Kataria

142

Data structures such as lists and dicts will be discussed in later tutorials.

You can also assign functions and classes to variables.

You will know more about functions and classes in later tutorials.

>>> # assigning functions

...

>>> import functools

>>> memoize = functools.lru_cache

>>> print(memoize)

<function lru_cache at 0x7fb2a6b42f28>

>>> # class assignment

...

>>> class MyClass:

... pass

...

>>> give_me_more = MyClass()

>>> print(give_me_more)

<__main__.MyClass object at 0x7f512e65bfd0>

Working with variables

Variables will support any method the underlying type supports. For example, if an integer value is
stored in a variable, then the variable will support integer functions such as addition.

In the following example, you assign the number 2 to the variable var and then add 3 to var. This

will print 5, the result of 3 being added to the value stored in var which is 2.

>>> var = 2

>>> print(var + 3)

5

You can make a change in a variable and assign it to the same variable. This is done generally
when some kind of data type change is done.

For example, you can take a number as input. This will take in the digit as a string. You can then
take the string number and convert it to int and assign it to the same number.

>>> number = input()

2

>>> type(number)

<class 'str'>

>>> number = int(number)

>>> type(number)

<class 'int'>

Computer Programming using Python: by Haridas Kataria

143

We will use a function range(3) which returns three values.

>>> print(range(3))

[0, 1, 2]

Something that returns three values can be unpacked to three variables. This is like saying take
whatever is in range(3) and instead of assigning it to a single variable, break it up and assign

individual values to the three variables. This is done using a comma between the variables.

>>> id1, id2, id3 = range(3)

>>> print(id1)

0

>>> print(id2)

1

>>> print(id3)

2

Python String:

Strings are sequences of characters. Your name can be considered a string. Or, say you live in
Zambia, then your country name is "Zambia", which is a string.

In this tutorial you will see how strings are treated in Python, the different ways in which strings are
represented in Python, and the ways in which you can use strings in your code.

How to create a string and assign it to a variable

To create a string, put the sequence of characters inside either single quotes, double quotes, or
triple quotes and then assign it to a variable. You can look into how variables work in Python in the
Python variables tutorial.

For example, you can assign a character ‘a’ to a variable single_quote_character. Note that the

string is a single character and it is “enclosed” by single quotes.

>>> single_quote_character = 'a'

>>> print(single_quote_character)

a

>>> print(type(single_quote_character)) # check the type of the variable.

<class 'str'>

Similarly, you can assign a single character to a variable double_quote_character. Note that the

string is a single character but it is “enclosed” by double quotes.

Computer Programming using Python: by Haridas Kataria

144

>>> double_quote_character = "b"

>>> print(double_quote_character)

b

>>> print(type(double_quote_character))

<class 'str'>

Also check out if you can assign a sequence of characters or multiple characters to a variable. You
can assign both single quote sequences and double quote sequences.

>>> double_quote_multiple_characters = "aeiou"

>>> single_quote_multiple_characters = 'aeiou'

>>> print(type(double_quote_multiple_characters),

type(single_quote_multiple_characters))

<class 'str'> <class 'str'>

Interestingly if you check the equivalence of one to the other using the keyword is, it returns True.

>>> print(double_quote_multiple_characters is

double_quote_multiple_characters)

True

Take a look at assignment of strings using triple quotes and check if they belong to the class str as

well.

>>> triple_quote_example = """this is a sentence written in triple quotes"""

>>> print(type(triple_quote_example))

<class 'str'>

In the examples above, the function type is used to show the underlying class that the object will

belong to. Please note that all the variables that have been initiated with single, double, or triple
quotes are taken as string. You can use single and double quotes for a single line of characters.
Multiple lines are generally put in triple quotes.

String common methods

• Get the index of a substring in a string.

• # find the index of a "c" in a string "abcde"

• >>> "abcde".index("c")

2

2 is returned because the position of the individual letters in the strings is 0-indexed. So, index of "a"
in "abcde" is 0, that of "b" is 1, and so on.

Computer Programming using Python: by Haridas Kataria

145

• Test if a substring is a member of a larger string. This is done using the keyword in and

writing the test. The skeleton is shown below.

substring in string

>>> # for example, test if string "i" is present in string "pythonic"

at least once. "i" is present in the string. Therefore, the result

should be true.

>>> "i" in "pythonic"

True

>>> # as "x" is not present in the string "pythonic" the below test

should return false

>>> "x" in "pythonic" # "x" is not present in "pythonic"

False

• Join a list of strings using the join method. A list of strings is written by delimiting the
sequence with a comma ,, and enclosing the whole group with brackets [...]. For a more

detailed tutorial on lists head over to the python lists tutorial. You can join a list of strings by
giving the delimiter as the object on which the method join will act and the list of strings as

the argument.

• >>> # join a list of strings 1, 2, 3 with a space as a delimiter and

1,2,3 as the list of strings. So, the result will be the strings with

spaces between them.

• >>> combined_string = " ".join(["1", "2", "3"])

'1 2 3'

• Break a string based on some rule. This takes in the string as the object on which the
method split is passed using the dot operator. Splitting takes a space as the default

parameter.

For example you can split a string based on the spaces between the individual values.

 >>> # split the string "1 2 3" and return a list of the numbers.

 >>> "1 2 3".split() # splitting

 ['1', '2', '3']

Or you can split a string based on a delimiter like :.

 >>> “1:2:3”.split(“:”)

 [‘1’, ‘2’, ‘3’]

• Access individual characters in a string. Note the first element has index 0. You access the

first element with the index 0, second element with the index 1, and so on.

• >>> lang = "python"

Computer Programming using Python: by Haridas Kataria

146

• >>> print(lang[0])

• >>> print(lang[2]) # access the 3rd letter

• 't'

• >>> print(lang[-3]) # access the third letter from the end.

'h'

Formatting in String:

String object can be formatted. You can use %s as a formatter which will enable you to insert

different values into a string at runtime and thus format the string. The %s symbol is replaced by

whatever is passed to the string.

 >>> print("I love %s in %s" % ("programming", "Python")) # templating

strings

 'I love programming in Python'

You can also use the keyword format. This will enable you to set your own formatters instead of %s.

>>> print("I love {programming} in

{python}".format(programming="programming", python="Python"))

'I love programming in Python'

Truth value testing of String

A string is considered to be true in Python if it is not an empty string. So, we get the following:

Test truth value of empty string

>>> print(bool(""))

False

Test truth value of non-empty string "x"

>>> print(bool("x"))

True

Python Control Structures - Loops and Conditionals

You can control the flow of logic in your code through various methods.

Basic control flows

Computer Programming using Python: by Haridas Kataria

147

• Selection (if statements)
• Iteration (for loops)

More advanced control flows

• Procedural Abstraction (functions)
• Recursion
• Concurrency
• Exception Handling and Speculation
• Nondeterminacy

In this tutorial you will come to know:

How to have sequential, selective and iterative flows in your code. This can be achieved using the
for loop. How to achieve procedural abstraction. This can be done by the use of functions.

Other topics like Recursion, Exception Handling, Concurrency will be discussed in later tutorials.

Loops

Working on items of the iterable

If you want to run an operation on a collection of items, then you can do it using for loops. The
skeleton for using the for loop is shown below.Note that the for statement line will end with a
colon : and the rest of the code block must be indented with a spacing of 4 spaces. An iterable is

any object that can be looped on such as list, tuple, string etc.

for item in iterable: # you can place any list or tuple or string in place of

iterable

 # write your code here.

 pass

If you want to print an element of a list of fruits, you can write the following code to achieve that.

>>> fruits = ["apples", "oranges", "mangoes"]

>>> for fruit in fruits:

... print(fruit)

...

apples

oranges

mangoes

In the example above, note that items in the iterable (i.e fruits) will be assigned to the for loop
variable (i.e fruit) during the iteration process. So, we can access the item directly.

>>> fruits = ["apples", "oranges", "mangoes"]

>>> for fruit in fruits:

Computer Programming using Python: by Haridas Kataria

148

... string_size = 0

... for alphabet in fruit:

... string_size += 1

... print("name of fruit: %s is has length %s" % (fruit, string_size))

...

name of fruit: apples is has length 6

name of fruit: oranges is has length 7

name of fruit: mangoes is has length 7

Looping on both indexes and items

In the previous section, index or the place value of the item in the iterable was not considered.
However, if you are interested in working with the index, then you can call the enumerate function

which returns a tuple of the index and the item. Taking the example above, you can print the name
of the fruit and the index of the list of fruits.

>>> fruits = ["apples", "oranges", "mangoes"]

>>> for index, fruit in enumerate(fruits):

... print("index is %s" % index)

... print("fruit is %s" % fruit)

... print("###########################")

...

index is 0

fruit is apples

###########################

index is 1

fruit is oranges

###########################

index is 2

fruit is mangoes

###########################

While statement

The while statement will execute a block of code as long as the condition is true. The skeleton of a
while block is shown below.

while condition:

 code_block

Note that similar to the for loop, the while statement ends with a colon : and the remaining code

block is indented by 4 spaces. We can implement the fruit example in the while block as well,
although the logic becomes a bit complicated than the for block.

>>> fruits = ["apples", "oranges", "mangoes"] # get the list

>>> length = len(fruits) # get the length that will be needed for the while

condition

>>> i = 0 # initialise a counter

>>> while i < length: # give the condition

Computer Programming using Python: by Haridas Kataria

149

... print(fruits[i]) # the code block

... i += 1 # increment the counter

...

apples

oranges

mangoes

Nested for loops

You can have one or more nested for loops. For example, look at the following example where you
can print the multiplication table. The table is shown only for 1 and 2 to save space. You can try for
the remaining digits.

>>> for i in range(1,3):

... for j in range(1,3):

... print('%d x %d = %d' % (i, j, i*j))

...

1 x 1 = 1

1 x 2 = 2

2 x 1 = 2

2 x 2 = 4

Selection and Python If statements

Creating if blocks

As a programmer, you will continually feel the need to control the flow of your program and let it
make runtime decisions based on some condition. The is done using the if syntax. To implement this
you can look at the if .. elif .. else syntax.

if condition1:

 code_block1

elif condition2:

 code_block2

else:

 code_block3

You can try the following example to understand better .

>>> num = 42

>>> if num == 42: # condition

... print("number is 42") # direction 1

...

number is 42

Adding an else block:

Computer Programming using Python: by Haridas Kataria

150

>>> num = 43

>>> if num == 42:

... print("number is 42")

... else:

... print("number if not 42")

...

number if not 42

Now, let us add an elif block to it as well and see what happens:

>>> num = 44

>>> if num == 42:

... print("number is 42")

... elif num == 44:

... print("num is 44")

... else:

... print("num is neither 42 nor 44")

...

num is 44

Nested if statements

You can have one or more nested if blocks inside if statements.

>>> num = 42

>>> if num > 20:

... if num < 50:

... print("num between 20 and 50")

...

num between 20 and 50

Lists

A list is a data-structure, or it can be considered a container that can be used to store multiple data
at once. The list will be ordered and there will be a definite count of it. The elements are indexed
according to a sequence and the indexing is done with 0 as the first index. Each element will have a
distinct place in the sequence and if the same value occurs multiple times in the sequence, each will
be considered separate and distinct element. A more detailed description on lists and associated
data-types are covered in this tutorial.

In this tutorial you will come to know of the about how to create python lists and the common
paradigms for a python list.

Lists are great if you want to preserve the sequence of the data and then iterate over them later for
various purposes. We will cover iterations and for loops in our tutorials on for loops.

https://www.hackerearth.com/practice/python/working-with-data/lists/tutorial/(https:/www.hackerearth.com/practice/data-structures/arrays/1-d/tutorial/)

Computer Programming using Python: by Haridas Kataria

151

How to create a list:

To create a list, you separate the elements with a comma and enclose them with a bracket “[]”.

For example, you can create a list of company names containing “hackerearth”, “google”,
“facebook”. This will preserve the order of the names.

>>> companies = ["hackerearth", "google", "facebook"]

>>> # get the first company name

>>> print(companies[0])

'hackerearth'

>>> # get the second company name

>>> print(companies[1])

'google'

>>> # get the third company name

>>> print(companies[2])

'facebook'

>>> # try to get the fourth company name

>>> # but this will return an error as only three names

>>> # have been defined.

>>> print(companies[3])

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: list index out of range

Trying to access elements outside the range will give an error. You can create a two-dimensional
list. This is done by nesting a list inside another list. For example, you can group “hackerearth” and
“paytm” into one list and “tcs” and “cts” into another and group both the lists into another “master”
list.

>>> companies = [["hackerearth", "paytm"], ["tcs", "cts"]]

>>> print(companies)

[['hackerearth', 'paytm'], ['tcs', 'cts']]

Methods over Python Lists

Python lists support common methods that are commonly required while working with lists. The
methods change the list in place. (More on methods in the classes and objects tutorial). In case you
want to make some changes in the list and keep both the old list and the changed list, take a look at
the functions that are described after the methods.

How to add elements to the list:

• list.append(elem) - will add another element to the list at the end.

• >>> # create an empty list

• >>> companies = []

•

Computer Programming using Python: by Haridas Kataria

152

• >>> # add “hackerearth” to companies

• >>> companies.append(“hackerearth”)

•

• >>> # add "google" to companies

• >>> companies.append("google")

•

• >>> # add "facebook" to companies

• >>> companies.append("facebook")

•

• >>> # print the items stored in companies

• >>> print(companies)

['hackerearth', 'google', 'facebook']

Note the items are printed in the order in which they youre inserted.

• list.insert(index, element) - will add another element to the list at the given index, shifting the
elements greater than the index one step to the right. In other words, the elements with the
index greater than the provided index will increase by one.

For example, you can create a list of companies ['hackerearth', 'google',

'facebook'] and insert “airbnb” in third position which is held by “facebook”.

 >>> # initialise a preliminary list of companies

 >>> companies = ['hackerearth', 'google', 'facebook']

 >>> # check what is there in position 2

 >>> print(companies[2])

 facebook

 >>> # insert “airbnb” at position 2

 >>> companies.insert(2, "airbnb")

 >>> # print the new companies list

 >>> print(companies)

 ['hackerearth', 'google', 'airbnb', 'facebook']

 >>> # print the company name at position 2

 >>> print(companies[2])

 airbnb

• list.extend(another_list) - will add the elements in list 2 at the end of list.

For example, you can concatenate two lists ["haskell", "clojure", "apl"] and ["scala",

"F#"] to the same list langs.

 >>> langs = ["haskell", "clojure", "apl"]

 >>> langs.extend(["scala", "F#"])

 >>> print(langs)

 ['haskell', 'clojure', 'apl', 'scala', 'F#']

Computer Programming using Python: by Haridas Kataria

153

• list.index(elem) - will give the index number of the element in the list.

For example, if you have a list of languages with elements ['haskell', 'clojure', 'apl',

'scala', 'F#'] and you want the index of “scala”, you can use the index method.

 >>> index_of_scala = langs.index("scala")

 >>> print(index_of_scala)

 3

How to remove elements from the list:

• list.remove(elem) - will search for the first occurrence of the element in the list and will then
remove it.

For example, if you have a list of languages with elements ['haskell', 'clojure', 'apl',

'scala', 'F#'] and you want to remove scala, you can use the remove method.

 >>> langs.remove("scala")

 >>> print(langs)

 ['haskell', 'clojure', 'apl', 'F#']

• list.pop() - will remove the last element of the list. If the index is provided, then it will remove
the element at the particular index. For example, if you have a list [5, 4, 3, 1] and you

apply the method pop, it will return the last element 1 and the resulting list will not have it.

• >>> # assign a list to some_numbers

• >>> some_numbers = [5, 4, 3, 1]

•

• >>> # pop the list

• >>> some_numbers.pop()

• 1

•

• >>> # print the present list

• >>> print(some_numbers)

[5, 4, 3]

Similarly, try to pop an element from a random index that exists in the list.

 >>> # pop the element at index 1

 >>> some_numbers.pop(1)

 4

 >>> # check the present list

 >>> print(some_numbers)

 [5, 3]

Computer Programming using Python: by Haridas Kataria

154

Other useful list methods

• list.sort() - will sort the list in-place.

For example, if you have an unsorted list [4,3,5,1], you can sort it using the sort method.

 >>> # initialise an unsorted list some_numbers

 >>> some_numbers = [4,3,5,1]

 >>> # sort the list

 >>> some_numbers.sort()

 >>> # print the list to see if it is sorted.

 >>> some_numbers

 [1, 3, 4, 5]

• list.reverse() - will reverse the list in place

For example, if you have a list [1, 3, 4, 5] and you need to reverse it, you can call

the reverse method.

 >>> # initialise a list of numbers that

 >>> some_numbers = [1, 3, 4, 5]

 >>> # Try to reverse the list now

 >>> some_numbers.reverse()

 >>> # print the list to check if it is really reversed.

 >>> print(some_numbers)

 [5, 4, 3, 1]

Functions over Python Lists:

• You use the function “len” to get the length of the list.

For example, if you have a list of companies ['hackerearth', 'google', 'facebook'] and

you want the list length, you can use the len function.

 >>> # you have a list of companies

 >>> companies = ['hackerearth', 'google', 'facebook']

 >>> # you want the length of the list

 >>> print(len(companies))

 3

• If you use another function “enumerate” over a list, it gives us a nice construct to get both the
index and the value of the element in the list.

Computer Programming using Python: by Haridas Kataria

155

For example, you have the list of companies ['hackerearth', 'google', 'facebook'] and

you want the index, along with the items in the list, you can use the enumerate function.

 >>> # loop over the companies and print both the index as youll as the

name.

 >>> for indx, name in enumerate(companies):

 ... print("Index is %s for company: %s" % (indx, name))

 ...

 Index is 0 for company: hackerearth

 Index is 1 for company: google

 Index is 2 for company: facebook

In this example, you use the for loop. For loops are pretty common in all programming languages
that support procedural constructs. You can head over to A complete theoretical reference to loops
in C to have a deeper understanding of for loops. Also look at the tutorial on loops in Python in
Python Control Structures tutorial.

• sorted function will sort over the list

Similar to the sort method, you can also use the sorted function which also sorts the list. The
difference is that it returns the sorted list, while the sort method sorts the list in place. So this function
can be used when you want to preserve the original list as well.

 >>> # initialise a list

 >>> some_numbers = [4,3,5,1]

 >>> # get the sorted list

 >>> print(sorted(some_numbers))

 [1, 3, 4, 5]

 >>> # the original list remains unchanged

 >>> print(some_numbers)

 [4, 3, 5, 1]

Python Dictionaries

A dictionary is a set of unordered key, value pairs. In a dictionary, the keys must be unique and they
are stored in an unordered manner.

In this tutorial you will learn the basics of how to use the Python dictionary.

By the end of the tutorial you will be able to - Create Dictionaries - Get values in a Dictionary - Add
and delete elements in a Dictionary - To and For Loops in a Dictionary

Creating a Dictionary

Computer Programming using Python: by Haridas Kataria

156

Let’s try to build a profile of three people using dictionaries. To do that you separate the key-value
pairs by a colon(“:”). The keys would need to be of an immutable type, i.e., data-types for which the
keys cannot be changed at runtime such as int, string, tuple, etc. The values can be of any type.
Individual pairs will be separated by a comma(“,”) and the whole thing will be enclosed in curly
braces({...}).

For example, you can have the fields “city”, “name,” and “food” for keys in a dictionary and assign
the key,value pairs to the dictionary variable person1_information.

>>> person_information = {'city': 'San Francisco', 'name': 'Sam', "food":

"shrimps"}

>>> type(person1_information)

<class 'dict'>

>>> print(person1_information)

{'city': 'San Francisco', 'name': 'Sam', 'food': 'shrimps'}

Get the values in a Dictionary

To get the values of a dictionary from the keys, you can directly reference the keys. To do this, you
enclose the key in brackets [...] after writing the variable name of the dictionary.

So, in the following example, a dictionary is initialized with keys “city”, “name,” and “food” and you
can retrieve the value corresponding to the key “city.”

>>> create a dictionary person1_information

>>> person1_information = {'city': 'San Francisco', 'name': 'Sam', "food":

"shrimps"}

>>> print the dictionary

>>> print(person1_information["city"])

San Francisco

You can also use the get method to retrieve the values in a dict. The only difference is that in the get
method, you can set a default value. In direct referencing, if the key is not present, the interpreter
throws KeyError.

>>> # create a small dictionary

>>> alphabets = {1: ‘a’}

>>> # get the value with key 1

>>> print(alphabets.get(1))

'a'

>>> # get the value with key 2. Pass “default” as default. Since key 2 does

not exist, you get “default” as the return value.

>>> print(alphabets.get(2, "default"))

'default'

>>> # get the value with key 2 through direct referencing

>>> print(alphabets[2])

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

Computer Programming using Python: by Haridas Kataria

157

KeyError: 2

Looping over dictionary

Say, you got a dictionary, and you want to print the keys and values in it. Note that the key-
words for and in are used which are used when you try to loop over something. To learn more

about looping please look into tutorial on looping.

>>> person1_information = {'city': 'San Francisco', 'name': 'Sam', "food":

"shrimps"}

>>> for k, v in person1_information.items():

... print("key is: %s" % k)

... print("value is: %s" % v)

... print("###########################")

...

key is: food

value is: shrimps

###########################

key is: city

value is: San Francisco

###########################

key is: name

value is: Sam

###########################

Add elements to a dictionary

You can add elements by updating the dictionary with a new key and then assigning the value to a
new key.

>>> # initialize an empty dictionary

>>> person1_information = {}

>>> # add the key, value information with key “city”

>>> person1_information["city"] = "San Francisco"

>>> # print the present person1_information

>>> print(person1_information)

{'city': 'San Francisco'}

>>> # add another key, value information with key “name”

>>> person1_information["name"] = "Sam"

>>> # print the present dictionary

>>> print(person1_information)

{'city': 'San Francisco', 'name': 'Sam'}

>>> # add another key, value information with key “food”

>>> person1_information["food"] = "shrimps"

>>> # print the present dictionary

>>> print(person1_information)

Computer Programming using Python: by Haridas Kataria

158

{'city': 'San Francisco', 'name': 'Sam', 'food': 'shrimps'}

Or you can combine two dictionaries to get a larger dictionary using the update method.

>>> # create a small dictionary

>>> person1_information = {'city': 'San Francisco'}

>>> # print it and check the present elements in the dictionary

>>> print(person1_information)

{'city': 'San Francisco'}

>>> # have a different dictionary

>>> remaining_information = {'name': 'Sam', "food": "shrimps"}

>>> # add the second dictionary remaining_information to

personal1_information using the update method

>>> person1_information.update(remaining_information)

>>> # print the current dictionary

>>> print(person1_information)

{'city': 'San Francisco', 'name': 'Sam', 'food': 'shrimps'}

Delete elements of a dictionary

To delete a key, value pair in a dictionary, you can use the del method.

>>> # initialise a dictionary with the keys “city”, “name”, “food”

>>> person1_information = {'city': 'San Francisco', 'name': 'Sam', "food":

"shrimps"}

>>> # delete the key, value pair with the key “food”

>>> del person1_information["food"]

>>> # print the present personal1_information. Note that the key, value pair

“food”: “shrimps” is not there anymore.

>>> print(person1_information)

{'city': 'San Francisco', 'name': 'Sam'}

A disadvantage is that it gives KeyError if you try to delete a nonexistent key.

>>> # initialise a dictionary with the keys “city”, “name”, “food”

>>> person1_information = {'city': 'San Francisco', 'name': 'Sam', "food":

"shrimps"}

>>> # deleting a non existent key gives key error.

>>> del person1_information["non_existent_key"]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

KeyError: 'non_existent_key'

Computer Programming using Python: by Haridas Kataria

159

So, instead of the del statement you can use the pop method. This method takes in the key as the

parameter. As a second argument, you can pass the default value if the key is not present.

>>> # initialise a dictionary with key, value pairs

>>> person1_information = {'city': 'San Francisco', 'name': 'Sam', "food":

"shrimps"}

>>> # remove a key, value pair with key “food” and default value None

>>> print(person1_information.pop("food", None))

'Shrimps'

>>> # print the updated dictionary. Note that the key “food” is not present

anymore

>>> print(person1_information)

{'city': 'San Francisco', 'name': 'Sam'}

>>> # try to delete a nonexistent key. This will return None as None is given

as the default value.

>>> print(person1_information.pop("food", None))

None

More facts about the Python dictionary

You can test the presence of a key using the has_key method.

>>> alphabets = {1: ‘a’}

>>> alphabets.has_key(1)

True

>>> alphabets.has_key(2)

False

A dictionary in Python doesn't preserve the order. Hence, we get the following:

>>> call = {'sachin': 4098, 'guido': 4139}

>>> call["snape"] = 7663

>>> call

{'snape': 7663, 'sachin': 4098, 'guido': 4139}

Sets

A set is an unordered collection data type with no duplicate elements. Sets are iterable and mutable.
The elements appear in an arbitrary order when sets are iterated.

Sets are commonly used for membership testing, removing duplicates entries, and also for
operations such as intersection, union, and set difference.

Computer Programming using Python: by Haridas Kataria

160

In this tutorial you will learn how to create a set and and the common paradigms for a set in Python.

How to create Sets

Sets can be created by calling the built-in set() function with a sequence or another iterable object.

>>> #creating an empty set

>>> setA = set()

>>> print(setA)

set()

>>> # creating a set with a string.

>>> # since a string is an iterable, this will succeed.

>>> setA = set("HackerEarth")

>>> print(setA)

{'h', 'H', 't', 'k', 'e', 'c', 'E', 'a', 'r'}

>>> # creating a set with a list

>>> setA = set(["C", “C++”, “Python”])

>>> print(setA)

{'C', 'Python', 'C++'}

>>> # creating a set with a list of numbers

>>> # there are some duplicates in it.

>>> setA = set([1, 2, 3, 4, 5, 6, 7, 7, 7])

>>> print(setA)

{1, 2, 3, 4, 5, 6, 7}

>>> # creating a set with a string. The string has some repeated characters.

>>> myString = 'foobar'

>>> setA = set(myString)

>>> print(setA)

{'r', 'a', 'b', 'f', 'o'}

set(object) iterates over the elements present in object and adds all the unique elements to the set.

Next you will learn about different operations available for Python Sets.

For all set operations, the set created below which is a set of integers. There are some integers that
are repeated here. :

>>> setA = set([1, 2, 3, 4, 5, 6, 7, 7, 7])

>>> print(setA)

{1, 2, 3, 4, 5, 6, 7}

Methods to change a set

How to add elements to a set

Computer Programming using Python: by Haridas Kataria

161

• Python set add(element)

This will add element to a set:

For example, you can add the element 8 to the set 8

 >>> setA.add(8)

 >>> print(setA)

 {1, 2, 3, 4, 5, 6, 7, 8}

Or you can add a tuple (9, 10) to the setA and the new set will consist of the tuple as well.

 >>> setA.add((9, 10))

 >>> print(setA)

 {1, 2, 3, 4, 5, 6, 7, 8, (9, 10)}

• Python set update(element)

Adds element to list; it is an in-place set union operation.

For example you can pass a list to the update method and this will update the setA with the
elements.

 >>> # pass a list with elements 11 and 12

 >>> setA.update([11, 12])

 >>> # check if setA is updated with the elements.

 >>> print(setA)

 {1, 2, 3, 4, 5, 6, 7, 8, 11, 12, (9, 10)}

Similarly you can update with a list and a new set as shown below

 >>> setA.update([12, 14], {15, 16})

 >>> print(setA)

 {1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15, (9, 10), 16}

Using add, elements can be added but not another iterable like set, list, or tuple. Update can be
used to add iterable or iterables of hashable elements.

Methods to remove elements from a set

Python set discard(element) and remove(element) Used to remove element from the set

>>> # removes element 7 from set

>>> setA.discard(7)

>>> print(setA)

Computer Programming using Python: by Haridas Kataria

162

{1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 15, (9, 10), 16}

>>> # removes element 8 from set

>>> setA.remove(8)

>>> print(setA)

{1, 2, 3, 4, 5, 6, 11, 12, 14, 15, (9, 10), 16}

Both discard and remove take a single argument, the element to be deleted from the set. If the value
is not present, discard() does not do anything. Whereas, remove will raise a KeyError exception.

>>> # discard doesn’t do anything is value to be discarded is not present

>>> setA.discard(19)

>>> print(setA)

{1, 2, 3, 4, 5, 6, 11, 12, 14, 15, (9, 10), 16}

>>> # this operation fails with an exception being raised

>>> setA.remove(19)

Traceback (most recent call last):

 File "python", line 1, in <module>

KeyError: 19

Other useful set methods

• Python set copy() Creates a shallow copy of the set with which it is called

• >>> shallow_copy_of_setA = setA.copy()

• >>> print(shallow_copy_of_setA)

{1, 2, 3, 4, 5, 6, 11, 12, 14, 15, (9, 10), 16}

Using assignment here instead of copy() will create a pointer to the already existing set.

• Python set clear() Will remove all elements from set

• >>> # clear the set shallow_copy_of_setA created before using copy()

operation

• >>> shallow_copy_of_setA.clear()

• >>> print(shallow_copy_of_setA)

set()

• Python set pop() Removes an arbitrary set element

• >>> # popping an element from setA

• >>> setA.pop()

• 1

• >>> # pop raises a KeyError exception if the set is empty

• >>> shallow_copy_of_setA.pop()

Computer Programming using Python: by Haridas Kataria

163

• Traceback (most recent call last):

• File "python", line 1, in <module>

KeyError: 'pop from an empty set'

Set Operations

• Set Intersection using intersection(s) Returns element present in both sets; this can also be
achieved using the ampersand operator (&).

• >>> # create a new set setB

• >>> setB= set()

•

• >>> # update setB with values

• >>> setB.update([1, 2, 3, 4, 5, 10, 15, 22])

• >>> print(setB)

• {1, 2, 3, 4, 5, 10, 15, 22}

•

• >>> # print a new set with the values present in both setA and setB

• >>> print(setA & setB)

• {2, 3, 4, 5, 15}

•

• >>> # above operation and using method name intersection shows same

results

• >>> setA.intersection(setB)

{2, 3, 4, 5, 15}

• Set Difference using difference() Returns the difference of two sets; “-” operator can also be
used to find the set difference.

• >>> # print a new set with values present in setA but not in setB

• >>> setA.difference(setB)

• {6, 11, 12, 14, (9, 10), 16}

•

• >>> # this returns empty set

• >>> setB.difference(setA)

set()

setB is a proper subset of setA to setB - setA is empty set.

Other Set Operations

• Python set isdisjoint() Returns true if intersection of sets is empty otherwise false

• >>> # returns false as both have common elements

Computer Programming using Python: by Haridas Kataria

164

• >>> setA.isdisjoint(setB)

• False

•

• >>> # create a new empty set setC

• >>> setC = set()

• >>> # update setC with values

• >>> setC.update([100, 99])

•

• >>> # returns true as setA and setC has no elements in common

• >>> setA.disjoint(setC)

True

• Python set difference_update() setA.difference_update(setB) removes all elements of y from
setA; ‘-=’ can be used in place of the difference_update method.

• >>> # update setA by removing elements present in setB from setA

• >>> setA.difference_update(setB)

• >>> # check the result set

• >>> print(setA)

{6, 11, 12, 14, (9, 10), 16}

Similarly, setA.intersection_update(setB) removes elements from setA which are not present in the
intersection set of setA and setB. ‘&=’ can be used in place of the intersection_update method.

• Python set issubset() and issuperset() setA.issubset(setB) returns True if setA is subset of
setB, False if not. “<=” operator can be used to test for issubset. To check for proper subset
“<” is used.

• >>> # check if setA is a subset of setB

• >>> setA.issubset(setB)

• False

• >>> # check if set B is a subset of setA

• >>> setB.issubset(setA)

False

Let’s make setB a subset of setA by removing values 1, 10, and 22.

 >>> # remove few elements to make setB a subset of setA

 >>> setB.remove(1)

 >>> setB.remove(10)

 >>> setB.remove(22)

 >>> # check the values present in setB now

 >>> print(setB)

 {2, 3, 4, 5, 15}

Computer Programming using Python: by Haridas Kataria

165

 >>> # issubset now returns true

 >>> setB.issubset(setA)

 True

 >>> setB < setA

 True

 >>> #setA now becomes a superset of setB

 >>> setA.issuperset(setB)

 True

Python Expressions:

Expressions are representations of value. They are different from statement in the fact that
statements do something while expressions are representation of value. For example any string is
also an expressions since it represents the value of the string as well.

Python has some advanced constructs through which you can represent values and hence these
constructs are also called expressions.

In this tutorial you will get to know about:

1. What are expressions in Python
2. How to construct expressions.

How to create an expressions

Python expressions only contain identifiers, literals, and operators. So, what are these?

Identifiers: Any name that is used to define a class, function, variable module, or object is an
identifier. Literals: These are language-independent terms in Python and should exist independently
in any programming language. In Python, there are the string literals, byte literals, integer literals,
floating point literals, and imaginary literals.Operators: In Python you can implement the following
operations using the corresponding tokens.

Operator Token

add +

subtract -

Computer Programming using Python: by Haridas Kataria

166

Operator Token

multiply *

power **

Integer Division /

remainder %

decorator @

Binary left shift <<

Binary right shift >>

and &

or \

Binary Xor ^

Binary ones complement ~

Less than <

Greater than >

Computer Programming using Python: by Haridas Kataria

167

Operator Token

Less than or equal to <=

Greater than or equal to >=

Check equality ==

Check not equal !=

Following are a few types of python expressions:

List comprehension

The syntax for list comprehension is shown below:

[compute(var) for var in iterable]

For example, the following code will get all the number within 10 and put them in a list.

>>> [x for x in range(10)]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Dictionary comprehension

This is the same as list comprehension but will use curly braces:

{ k, v for k in iterable }

For example, the following code will get all the numbers within 5 as the keys and will keep the
corresponding squares of those numbers as the values.

>>> {x:x**2 for x in range(5)}

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

Computer Programming using Python: by Haridas Kataria

168

Generator expression

The syntax for generator expression is shown below:

(compute(var) for var in iterable)

For example, the following code will initialize a generator object that returns the values within 10
when the object is called.

>>> (x for x in range(10))

<generator object <genexpr> at 0x7fec47aee870>

>>> list(x for x in range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Conditional Expressions

You can use the following construct for one-liner conditions:

true_value if Condition else false_value

Example:

>>> x = "1" if True else "2"

>>> x

'1'

