Lesson Plan

Name of the Faculty member:	Sh. Vipul Pant
Discipline:	Computer Engg.
Semester:	3 rd
Subject:	Digital Electronics
Lesson Plan duration:	w.e.f. 22 nd July-16 th Nov, 2019 (tentative)

Week	Theory		Practical	
	Lecture	Topic Covered	Practical	Topic Covered (Including Viva-
	dav	(Including Assessment and	day	Voce)
		Sessionals)		
1 st	1.	Introduction to Digital Electronics, Analog signals, Digital Signals	1.	Verification and interpretation of truth tables for AND, OR, NOT NAND, NOR and Exclusive OR (EXOR) and Exclusive NOR(EXNOR) gates (Gr-A)
	2.	Distinction b/w Analog & Digital Signals	2.	Verification and interpretation of truth tables for AND, OR, NOT NAND, NOR and Exclusive OR (EXOR) and Exclusive
	3.	Applications and advantages of Digital Signals		NOR(EXNOR) gates (Gr-B)
2 nd	4.	Number System: Binary, Octal, Decimal & Hexadecimal, Conversion exercises	3.	Same Practical Repeated (Gr-A)
	5.	Conversion exercises on fractional numbers	4.	Same Practical Repeated (Gr-B)
	6.	Binary addition & subtraction. Subtraction using 1's & 2's Complement method		
3 rd	7.	Revision of 1 st & 2 nd Unit	5.	Realization of Logic Functions with the help of NAND & NOR gates (Gr-A)
	8.	Codes and Parity: Concept of code, Weighted & Non weighted code, eg. BCD	6.	Realization of Logic Functions with the help of NAND & NOR gates (Gr-B)
	9.	Excess-3 code, Gray code, conversion from binary to Gray code and vice versa		
4 th	10.	Concept of Parity- Single and Double parity	7.	To design a half adder using a NAND & XOR gates and verification of its operations (Gr-A)
	11.	Error Detection using Single parity	8.	To design a half adder using a NAND & XOR gates and verification of its
	12.	Logic Gates and Families: Introduction to Logic Gates, Negative and Positive logic		operations (Gr-B)
5 th	13.	Definitions, Symbols & Truth tables of NOT, AND, OR, NAND & NOR gates	9.	Construction of a full adder using a NAND & XOR gates and verification of its operations (Gr-A)
	14.	Definitions, Symbols & Truth tables of EX-OR & EX-NOR gates	10.	Construction of a full adder using a NAND & XOR gates and verification of
	15.	NAND & NOR gates as Universal gates, Introduction to TTL & CMOS logic families		its operations (Gr-B)
6 th	16.	Revision of 3 rd & 4 th Unit	11.	Repetition of Practical's for Those who came Late (Gr-A)
	17.	Logic Simplification: Boolean algebra-Postulates, Laws and Theorems of Boolean algebra	12.	Repetition of Practical's for Those who came Late (Gr-B)
	18.	De Morgan's Theorem with truth table, implementation of Boolean equation with gates		

7 th	19.	Karnaugh map(K-map) upto 4-	13.	Lab Performance & Viva-Voce (Gr-A)
		combinational logic circuits		
	20.	Exercise on K-map	14.	Lab Performance & Viva-Voce (Gr-B)
	21.	1 st sessional Test	_	
8 th	22.	Arithmetic Circuits: Half Adder & Full Adder Circuit- Design and Implementation, 4- bit Parallel binary adder design	15.	Verification of Truth Table for Encoder & Decoder IC's, MUX and DeMUX (Gr-A)
	23.	Decoder: Introduction & 4-bit decoder circuit for seven segment display	16.	Verification of Truth Table for Encoder & Decoder IC's, MUX and DeMUX (Gr-B)
	24.	Multiplexer: Introduction, basic functions and block diagrams with different IC's		
9 th	25.	De multiplexer : Introduction, basic functions and block diagrams with different IC's	17.	Verification of Truth Table for Encoder & Decoder IC's, MUX and DeMUX (Gr-A)
	26.	Encoder: Introduction, basic functions and block diagrams with different IC's	18.	Verification of Truth Table for Encoder & Decoder IC's, MUX and DeMUX (Gr-B)
	27.	Revision of 5 th , 6 th , and 7 th Unit		
10 th	28.	Latches and Flip Flops: Concept of a Latch, types, working & applications	19.	Verification of Truth Table for Positive edge triggered & Negative edge triggered, level triggered IC Flip Flops (Gr-A)
29. 30.	29.	Flip Flop- Introduction, Defn, types RS, D,JK, T AND Master Slave Flip Flop	20.	Verification of Truth Table for Positive edge triggered & Negative edge triggered, level triggered IC Flip Flops
	30.	Explanation of their working with truth table and wave form diagram		(Gr-B)
11 th	31.	Applications of Flip Flops, Difference b/w Latch & Flip Flop	21.	Verification of Truth Table for Positive edge triggered & Negative edge triggered, level triggered IC Flip Flops (Gr-A)
	32.	Counters: Definition, Types- Synchronous and Asynchronous Counters, Their Difference	22.	Verification of Truth Table for Positive edge triggered & Negative edge triggered, level triggered IC Flip Flops (Gr-B)
	33.	Binary counters: Explanation with truth Table and diagram, 2-bit, 3- bit counters		
12 th	34.	Mod-N or Divide by N counters: Examples with truth Table and diagram	23.	To design a 4-bit SISO, SIPO, PISO, PIPO shift registers using JK/D Flip Flops & verification of their operations (Gr-A)
	35.	Decade Counter(both Synchronous & Asynchronous): Design	24.	o design a 4-bit SISO, SIPO, PISO, PIPO shift registers using JK/D Flip Flops & verification of their operations (Gr-B)
	36.	Up/Down Asynchronous and		
13 th	37.	Ring Counter and Johnson Counter	25.	To design a 4-bit SISO, SIPO, PISO, PIPO shift registers using JK/D Flip Flops & verification of their operations (Gr-A)
	38.	2 nd Sessional Test	26.	o design a 4-bit SISO, SIPO, PISO, PIPO
	39.	Shift Register: Introduction & basic Concept of shifting Left and Right, Types	-	verification of their operations (Gr-B)
14 th	40.	SISO, SIPO: Explanation with block diagram & Truth Table	27.	Lab Performance & Viva-Voce (Gr-A)
	41.	PISO & PIPO: Explanation with block diagram & Truth Table	28.	Lab Performance & Viva-Voce (Gr-B)
	42.	Universal Shift Register		
15 th	43.	A/D & D/A Converters: Introduction & working Principle	29.	To design a 4-bit Ring Counter and verify its operations(Gr-A)
	44.	Different Techniques of A/D conversion & Study of Stair Step Ramp A/D converter	30.	To design a 4-bit Ring Counter and verify its operations(Gr-B)
	45.	Study of Dual Slope and Successive Approximation A/D converter		

16 th	46.	Detail study of Binary Weighted D/A converter	31.	To design a 4-bit Ring Counter and verify its operations(Gr-A)
	47.	Detail Study of R/2R Ladder D/A converter, Applications of A/D & D/A converter	32.	To design a 4-bit Ring Counter and verify its operations(Gr-B)
	48.	Semiconductor memories : Memory Organization, Classification of Semiconductor memories		
17 th	49.	RAM: DDRAM, SRAM, ROM: PROM, EPROM,EEPROM	33.	Use of Asynchronous Counter IC'S (7490 OR 7493) (Gr-A)
	50.	Introduction to 74181 IC	34.	Use of Asynchronous Counter IC'S (7490 OR 7493) (Gr-B)
	51.	3 rd Sessional Test		