
Chapter 1-Introduction

•Digital system

•Analog system

•Need of Digital system/advantages of digital systems

•Applications of digital systems

Digital signal and digital system

• Digital signal: The signal which can have any of the
two discrete voltage levels. One of these levels is

Low level and other is High level.

• Digital system: The system used to process a digital
signal is called a digital system.

Positive Logic

• In digital system,if lower voltage level is used to
represent Low and higher voltage level is used to
represent High,it is called positive Logic.

High

Low

5V

3.8V

1V

0V

Negative Logic

• In digital system, if lower voltage level is used
to represent High and higher voltage level is
used to represent Low ,it is called Negative
Logic.

High

5V
Low

3.8V

1V

0V

Need of digital systems/Advantages of digital

systems.

• The devices used in digital systems operates in
ON or OFF state.

• There are only few basic operations in digital
systems.

• Digital techniques use boolean algebra-easy to
understand .

• A large no of ICs are available for performing
various operations.

• Effect of ageing ,fluctuations, temperature and noise

is small in digital circuits.

• Digital systems have storage capability.

• Display of data and information is convenient.

• Latest electronic systems are digital in nature.

• Designing and development of digital systems is
simple due to availability of various logic families.

Applications of Digital systems.

• Computers.
• Medical Electronics.
• Instrumentation.
• Communication e.g. Mobile Cell Phones, Internet.
• Consumer products e.g. watches,calculators,smart TV
• Information sytems
• Industrial Control systems
• Banking and finance
• Scientific Instruments.
• Office machines,homes ,cars,education etc.

Chapter 2

NUMBER SYSTEMS

Number systems

•Decimal Number system

•Binary Number system

•Octal number system

•Hexadecimal Number system

Decimal Number system

Base/Radix – 10

Ten symbols-0,1,2,3,4,5,6,7,8,9.

Binary Number system

• Base/radix – 2(two)

• Symbols- 0,1.

• One binary digit is called a bit.e.g. o

• Nibble: A combination of four bits.e.g.0011

• Byte: a combination of eight bits. e.g.10110011

• MSB(Most Significant bit)- the leftmost bit of the
binary number

• LSB(Least Significant Bit)-The rightmost bit of the
binary number

Octal Number system

•Base/radix-8

•Symbols-0,1,2,3,4,5,6,7.

Hexadecimal number system

•Base/Radix- 16

•Symbols : -
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

CHAPTER3

CODES

Codes.

• Straight Binary code

• BCD Code

• Grey Code

• Excess-3 code

Straight Binary code

• uses natural binary form. It is a weighted
code. Each position has a weight-1,2,4,8,16
and so on.

 BCD code:

• Decimal digits 0 through 9 are represented by
their binary equivalent 4 bit code.

• E.g.23 in decimal is equivalent to 0010 0011 in
BCD.

• Also known as 8421 code.-8,4,2,1 are the
weights of the four bits of the code.

 BCD code:

Binary
0 0 0 0

BCD
0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0

0 0 1 1 0 0 1 1

 0 1 0 0 0 1 0 0

 0 1 0 1 0 1 0 1

 0 1 1 0 0 1 1 0

0 1 1 1 0 1 1 1

1 0 0 0 1 0 0 0

1 0 0 1 1 0 0 1

Gray code

• Gray Code is a non weighted Code.

• The two consecutive codes differ by one bit.
So also called reflected code.

Excess-3 Code

• Another form of BCD code

• The code for each decimal digit is obtained by
adding decimal 3 to the natural BCD code of
the digit

Excess-3 Code

Binary
0 0 0 0

BCD
0 0 0 0

EXCESS-3
0 0 1 1

0 0 0 1 0 0 0 1 0 1 0 0

0 0 1 0 0 0 1 0 0 1 0 1

0 0 1 1 0 0 1 1 0 1 1 0

 0 1 0 0 0 1 0 0 0 1 1 1

 0 1 0 1 0 1 0 1 1 0 0 0

 0 1 1 0 0 1 1 0 1 0 0 1

0 1 1 1 0 1 1 1 1 0 1 0

1 0 0 0 1 0 0 0 1 0 1 1

1 0 0 1 1 0 0 1 1 1 0 0

Error detecting Codes

• Parity: It is an extra bit added to the binary
code to make the number of ones in the code
even or odd.

• Parity is used to detect single bit error.

BCD
0 0 0 0

BCD with even parity
0 0 0 0 0

BCD with odd parity
1 0 0 0 0

0 0 0 1 1 0 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 0 0 0 0 1 0

0 0 1 1 0 0 0 1 1 1 0 0 1 1

 0 1 0 0 1 0 1 0 0 0 0 1 0 0

 0 1 0 1 0 0 1 0 1 1 0 1 0 1

 0 1 1 0 0 0 1 1 0 1 0 1 1 0

0 1 1 1 1 0 1 1 1 0 0 1 1 1

1 0 0 0 1 1 0 0 0 0 1 0 0 0

1 0 0 1 0 1 0 0 1 1 1 0 0 1

Chapter 4

Logic Gates

Logic gate

• A logic gate is an elementary building block of
a digital circuit. Most logic gates have two or
more inputs and one output. At any given
moment, every terminal is in one of the two
binary conditions low (0) or high (1),
represented by different voltage levels.

Various Logic gates

AND, OR, NOT, NAND, NOR, EXOR
and EXNOR gates.

Truth Tables

• Truth tables help understand the behaviour of
logic gates.

• They show how the input(s) of a logic gate relate
to its output(s).

• The gate input(s) are shown in the left column(s)
of the table with all the different possible input
combinations. This is normally done by making
the inputs count up in binary.

• The gate output(s) are shown in the right hand
side column.

AND Gate: The output is high if all the inputs are
high.It has two or more inputs and one output.

• Symbol of AND Gate(2 input)

• Truth table of AND gate

OR- GATE: The output is high if any or all the inputs
are high.It has two or more inputs and one output.

Symbol of OR gate Truth table of OR gate

NOT GATE: It has one input and
one output.

The output is complement of the input.

NAND GATE: The output is high if any of the
inputs is low.It has two or more inputs and
one output.

NOR GATE- It is NOT-OR gate, If any input is high
output is low

Symbol of 2 input NOR Gate

Truth Table of NOR Gate

EX-OR GATE

EX-NOR GATE

Symbols of all gates

Universal Gates

NAND Gate

NOR Gate

A NAND gate can be used as a NOT gate using

either of the following wiring configurations.

http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html
http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html

Chapter 5

LOGIC SIMPLIFICATION

Logic Simplification

• To simplify the logic expressions so as to
minimise the number of gates required.

• There are two methods of logic simplification.
• Using Laws of boolean Algebra

• Using K-Map

Laws of Boolean Algebra

• Commutative Law

• A+B=B+A(OR Law)

• A.B=B.A(AND Law)

A B A+B B+A

0 0 0 0

0 1 1 1

1 0 1 1

1 1 1 1

Associative Law

• A+(B+C)= (A+B)+C

• A.(B.C)=(A.B).C

 A B C A+(B+C)

(A+B)+C

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Distributive Law

• A(B+C)=AB+AC

A B C B+C A(B+C) AB AC AB+AC

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1

AND LAWS

• A.0=0

• A.1=A

• A.A.=A

• A.A= 0

OR lAWS

OR LAWS

• A+0=0

• A+1=1

• A+A=A

• A+A= 1

NOT LAWS

• IF A=0 ,A= 1

• IF A=1 ,A= 0

Some other Laws

A+ AB=A+B

 A=A

Demorgan’s Theorm

 A.B=A+B(first Theorm)

 A+B=A.B(Second Theorm)

Demorgan’s FirstTheorm:

• A.B=A+B(first Theorm)

A B A.B A.B A B A+B

0 0 0 1 1 1 1

0 1 0 1 1 0 1

1 0 0 1 0 1 1

1 1 1 0 0 0 0

Demorgan’s Theorm

• A+B=A.B(first Theorm)

A B A+B A+B A B A. B

0 0 0 1 1 1 1

0 1 1 0 1 0 0

1 0 1 0 0 1 0

1 1 1 0 0 0 0

Karnaugh Map

It is a graphical method of logic
simplification of logic expressions.

2,3,4 -Variable K-Map

consider the Sum of Product form,

example: f = x'y'z' + x'yz' + xy'z' + xyz' + xyz

Designing of k-map

 make the largest possible groups of adjacent 1's
(remembering that the map wraps on its edges).

 Every 1 must be in a group, overlapping groups are
ok as are single 1's.
The number of adjacent 1's in any group must be an
integeral power of 2, i.e. 1, 2, 4, 8, 16.
 Translate each group into a product term by
including each variable or it's complement if the
variable does not change value over the group

Solution

