Chapter 1-Introduction

-Digital system

- Analog system
- Need of Digital system/advantages of digital systems
-Applications of digital systems

Digital signal and digital system

- Digital signal: The signal which can have any of the two discrete voltage levels. One of these levels is Low level and other is High level.
- Digital system: The system used to process a digital signal is called a digital system.

Positive Logic

- In digital system, if lower voltage level is used to represent Low and higher voltage level is used to represent High,it is called positive Logic.

Negative Logic

- In digital system, if lower voltage level is used to represent High and higher voltage level is used to represent Low, it is called Negative Logic.

Need of digital systems/Advantages of digital systems.

- The devices used in digital systems operates in ON or OFF state.
- There are only few basic operations in digital systems.
- Digital techniques use boolean algebra-easy to understand .
- A large no of ICs are available for performing various operations.
- Effect of ageing ,fluctuations, temperature and noise is small in digital circuits.
- Digital systems have storage capability.
- Display of data and information is convenient.
- Latest electronic systems are digital in nature.
- Designing and development of digital systems is simple due to availability of various logic families.

Applications of Digital systems.

- Computers.
- Medical Electronics.
- Instrumentation.
- Communication e.g. Mobile Cell Phones, Internet.
- Consumer products e.g. watches,calculators,smart TV
- Information sytems
- Industrial Control systems
- Banking and finance
- Scientific Instruments.
- Office machines,homes ,cars,education etc.

Chapter 2

NUMBER SYSTEMS

Number systems

-Decimal Number system
-Binary Number system

- Octal number system
-Hexadecimal Number system

Decimal Number system

Base/Radix - 10

Ten symbols-0,1,2,3,4,5,6,7,8,9.

Binary Number system

- Base/radix - 2(two)
- Symbols-0,1.
- One binary digit is called a bit.e.g. o
- Nibble: A combination of four bits.e.g. 0011
- Byte: a combination of eight bits. e.g. 10110011
- MSB(Most Significant bit)- the leftmost bit of the binary number
- LSB(Least Significant Bit)-The rightmost bit of the binary number

Octal Number system

-Base/radix-8

-Symbols-0,1,2,3,4,5,6,7.

Hexadecimal number system

-Base/Radix- 16
-Symbols : -
$0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$.

CHAPTER3

CODES

Codes.

- Straight Binary code
- BCD Code
- Grey Code
- Excess-3 code

Straight Binary code

- uses natural binary form. It is a weighted code. Each position has a weight-1,2,4,8,16 and so on.

BCD code:

- Decimal digits 0 through 9 are represented by their binary equivalent 4 bit code.
- E.g. 23 in decimal is equivalent to 00100011 in BCD.
- Also known as 8421 code. $-8,4,2,1$ are the weights of the four bits of the code.

BCD code:

Binary	BCD
0000	0000
0001	0001
0010	0010
0011	0011
0100	0100
0101	0101
0110	0110
0111	0111
1000	1000
1001	1001

Gray code

- Gray Code is a non weighted Code.
- The two consecutive codes differ by one bit. So also called reflected code.

Excess-3 Code

- Another form of BCD code
- The code for each decimal digit is obtained by adding decimal 3 to the natural BCD code of the digit

Excess-3 Code

Binary	BCD	EXCESS-3
0000	00001	
0001	0001	0100
0010	0010	0101
0011	0011	0110
0100	0100	0111
0101	0101	1000
0110	0110	1001
0111	0111	1010
1000	1000	1011
1001	1001	1

Error detecting Codes

- Parity: It is an extra bit added to the binary code to make the number of ones in the code even or odd.
- Parity is used to detect single bit error.

BCD	BCD with even parity	BCD with odd parity 0000 00000
0001	10001	00001
0010	10010	00010
0011	00011	10011
0100	10100	00100
0101	00101	10101
0110	00110	10110
0111	10111	00111
1000	11000	01000
1001	01001	11001

Chapter 4

Logic Gates

Logic gate

- A logic gate is an elementary building block of a digital circuit. Most logic gates have two or more inputs and one output. At any given moment, every terminal is in one of the two binary conditions low (0) or high (1), represented by different voltage levels.

Various Logic gates

AND, OR, NOT, NAND, NOR, EXOR and EXNOR gates.

Truth Tables

- Truth tables help understand the behaviour of logic gates.
- They show how the input(s) of a logic gate relate to its output(s).
- The gate input(s) are shown in the left column(s) of the table with all the different possible input combinations. This is normally done by making the inputs count up in binary.
- The gate output(s) are shown in the right hand side column.

AND Gate: The output is high if all the inputs are high.lt has two or more inputs and one output.

- Symbol of AND Gate(2 input)

- Truth table of AND gate

2 Input AND gate		
A	B	$A \cdot B$
\square	\square	\square
\square	1	\square
1	\square	\square
1	1	1

OR- GATE: The output is high if any or all the inputs are high.It has two or more inputs and one output.

Symbol of OR gate Truth table of OR gate

2 Input OR gate		
A	B	$A+B$
\square	\square	\square
\square	1	1
1	\square	1
1	1	1

NOT GATE: It has one input and one output.

NOT gate	
A	$\overline{\bar{A}}$
\square	1
1	\square

The output is complement of the input.

NAND GATE: The output is high if any of the inputs is low.It has two or more inputs and one output.

NOR GATE- It is NOT-OR gate, If any input is high output is low

Symbol of 2 input NOR Gate

2 Input NOR gate		
A	B	$\overline{A+E}$
0	0	1
0	1	0
1	0	0
1	1	0

EX-OR GATE

Input EXOR gate		
\boldsymbol{A}	B	A甲B
\square	\square	\square
\square	1	1
1	\square	1
1	1	\square

EX-NOR GATE

2 Input EXNOR gate		
A	B	$\overline{\mathrm{A} \oplus \mathrm{E}}$
0	0	1
0	1	0
1	0	0
1	1	1

Symbols of all gates

Universal Gates

NAND Gate
NOR Gate

A NAND gate can be used as a NOT gate using either of the following wiring configurations.

Chapter 5

LOGIC SIMPLIFICATION

Logic Simplification

- To simplify the logic expressions so as to minimise the number of gates required.
- There are two methods of logic simplification.
- Using Laws of boolean Algebra
- Using K-Map

Laws of Boolean Algebra

- Commutative Law
- $A+B=B+A(O R$ Law)
- $A . B=B \cdot A(A N D$ Law)

A	B	$A+B$	$B+A$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

Associative Law

- $A+(B+C)=(A+B)+C$
- A.(B.C)=(A.B).C

A	B	C	$A+(B+C)$	$(A+B)+C$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Distributive Law

- $A(B+C)=A B+A C$

A	B	C	$B+C$	$A(B+C)$	$A B$	$A C$	$A B+A C$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

AND LAWS

- A. $0=0$
- A.1=A
- A.A. =A
- $A . \bar{A}=0$

OR LAWS

- $A+0=0$
- $A+1=1$
- $A+A=A$
- $A+\bar{A}=1$

NOT LAWS

- IF $\mathrm{A}=0, \overline{\mathrm{~A}}=1$
- IF $A=1, A=0$

Some other Laws

$$
A+A B=A+B
$$

$$
A=A
$$

Demorgan's Theorm

$\overline{A . B}=\bar{A}+B$ (first Theorm)
$\overline{\mathrm{A}+\mathrm{B}}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}($ Second Theorm $)$

Demorgan's FirstTheorm:

- $\overline{\mathrm{A} . \mathrm{B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$ (first Theorm)

A	B	$\bar{A} \cdot \boldsymbol{B}$	$\overline{A \cdot B}$	\bar{A}	\bar{B}	$\bar{A}+\bar{B}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

Demorgan's Theorm

- $\overline{\mathrm{A}+\mathrm{B}}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$ (first Theorm)

A	B	$\bar{A}+\mathrm{B}$	$\overline{\mathrm{A}+\mathrm{B}}$	$\overline{\mathrm{A}}$	$\overline{\mathrm{B}}$	$\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Karnaugh Map

It is a graphical method of logic simplification of logic expressions.

2,3,4 -Variable K-Map

consider the Sum of Product form, example: $\mathrm{f}=\mathbf{x}^{\prime} \mathbf{y}^{\prime} \mathbf{z}^{\prime}+\mathbf{x}^{\prime} \mathbf{y z} \mathbf{z}^{\prime}+\mathbf{x} \mathbf{y}^{\prime} \mathbf{z}^{\prime}+\mathbf{x y z} \mathbf{z}^{\prime}+\mathbf{x y z}$

 YZ 00 01 11 10				
0	1	0	0	1
1	1	0	1	1

$$
\mathrm{f}=\mathrm{x}^{\prime} \mathrm{y}^{\prime} \mathrm{z}^{\prime}+\mathrm{x} \mathrm{yz}^{\prime}+\mathrm{xy} y^{\prime}+\mathrm{xyz} \mathrm{z}^{\prime}+\mathrm{xyz}
$$

Designing of k-map

make the largest possible groups of adjacent 1's (remembering that the map wraps on its edges).

Every 1 must be in a group, overlapping groups are ok as are single 1's.
The number of adjacent 1's in any group must be an integeral power of 2, i.e. 1, 2, 4, 8, 16.
Translate each group into a product term by including each variable or it's complement if the variable does not change value over the group

Solution

$$
\begin{aligned}
f & =x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y y^{\prime}+x y^{\prime} z^{\prime}+x y z^{\prime}+x y z \\
& =x y+z^{\prime}
\end{aligned}
$$

