Lesson Plan

Name of the Faculty member:	Sh. Vipul Pant
Discipline:	Computer Engg.
Semester:	3 rd
Subject:	Digital Electronics
Lesson Plan duration:	w.e.f. 2 nd July-16 th Nov, 2018 (tentative)

Week	Theory		Practical		
	Lecture	Topic Covered (Including Assessment and Sessionals)	Practical day	Topic Covered (Including Viva- Voce)	
	day				
1 st	1.	Introduction to Digital Electronics, Analog signals, Digital Signals	1.	Verification and interpretation of truth tables for AND, OR, NOT NAND, NOR and Exclusive OR (EXOR) and Exclusive NOR(EXNOR) gates (Gr-A)	
	2.	Distinction b/w Analog & Digital Signals	2.	Verification and interpretation of truth tables for AND, OR, NOT NAND, NOR and Exclusive OR (EXOR) and Exclusive NOR(EXNOR) gates (Gr-B)	
	3.	Applications and advantages of Digital Signals			
2 nd	4.	Number System: Binary, Octal, Decimal & Hexadecimal, Conversion exercises	3.	Same Practical Repeated (Gr-A)	
	5.	Conversion exercises on fractional numbers	4.	Same Practical Repeated (Gr-B)	
	6.	Binary addition & subtraction. Subtraction using 1's & 2's Complement method			
3 rd	7.	Revision of 1 st & 2 nd Unit	5.	Realization of Logic Functions with the help of NAND & NOR gates (Gr-A)	
	8.	Codes and Parity: Concept of code, Weighted & Non weighted code, eg. BCD	6.	Realization of Logic Functions with the help of NAND & NOR gates (Gr-B)	
	9.	Excess-3 code, Gray code, conversion from binary to Gray code and vice versa			
4 th	10.	Concept of Parity- Single and Double parity	7.	To design a half adder using a NAND & XOR gates and verification of its operations (Gr-A)	
	11.	Error Detection using Single parity	8.	To design a half adder using a NAND & XOR gates and verification of its	
	12.	Logic Gates and Families: Introduction to Logic Gates,		operations (Gr-B)	

		Negative and Positive logic		
5 th 13. 14. 15.	13.	Definitions, Symbols & Truth tables of NOT, AND, OR, NAND & NOR gates	9.	Construction of a full adder using a NAND & XOR gates and verification of its operations (Gr-A)
	14.	Definitions, Symbols & Truth tables of EX-OR & EX-NOR gates	10.	Construction of a full adder using a NAND & XOR gates and verification of
	15.	NAND & NOR gates as Universal gates		its operations (Gr-B)
	16.	Introduction to TTL & CMOS logic families	11.	Repetition of Practical's for Those who came Late (Gr-A)
	17.	Revision of 3 rd & 4 th Unit	12.	Repetition of Practical's for Those who came Late (Gr-B)
	18.	Logic Simplification: Boolean algebra-Postulates, Laws and Theorems of Boolean algebra		
7 th	19.	De Morgan's Theorem with truth table, implementation of Boolean equation with gates	th truth 13.	Lab Performance & Viva-Voce (Gr-A)
	20.	Karnaugh map(K-map) upto 4- variables in developing simple combinational logic circuits	14.	Lab Performance & Viva-Voce (Gr-B)
	21.	Exercise on K-map		
2	22.	1 st sessional Test	15.	Verification of Truth Table for Encoder & Decoder IC's, MUX and DeMUX (Gr-A)
	23.	Arithmetic Circuits: Half Adder & Full Adder Circuit- Design and Implementation	16.	Verification of Truth Table for Encoder & Decoder IC's, MUX and DeMUX (Gr-B)
	24.	4- bit Parallel binary adder design		
9 th 25. 26. 27.	25.	Decoder: Introduction & 4-bit decoder circuit for seven segment display	17.	Verification of Truth Table for Encoder & Decoder IC's, MUX and DeMUX (Gr-A)
	26.	Multiplexer: Introduction, basic functions and block diagrams with different IC's	18.	Verification of Truth Table for Encoder & Decoder IC's, MUX and DeMUX (Gr-B)
	27.	De multiplexer : Introduction, basic functions and block diagrams with different IC's		
10 th	28.	Encoder: Introduction, basic functions and block diagrams with different IC's	19.	Verification of Truth Table for Positive edge triggered & Negative edge triggered, level triggered IC Flip Flops (Gr-A)
	29.	Revision of 5 th , 6 th , and 7 th Unit	20.	Verification of Truth Table for Positive
	30.	Latches and Flip Flops: Concept of a Latch, types, working & applications		edge triggered & Negative edge triggered, level triggered IC Flip Flops (Gr-B)
11 th	31.	Flip Flop- Introduction, Defn, types RS, D,JK, T AND Master Slave Flip Flop	21.	Verification of Truth Table for Positive edge triggered & Negative edge triggered, level triggered IC Flip Flops (Gr-A)
	32.	Explanation of their working with truth table and wave form diagram	22.	Verification of Truth Table for Positive edge triggered & Negative edge triggered, level triggered IC Flip Flops
	33.	Applications of Flip Flops,		(Gr-B)

		Difference b/w Latch & Flip Flop		
12 th	34.	Counters: Definition, Types- Synchronous and Asynchronous Counters, Their Difference	23.	To design a 4-bit SISO, SIPO, PISO, PIPC shift registers using JK/D Flip Flops & verification of their operations (Gr-A)
	35.	Binary counters: Explanation with truth Table and diagram, 2-bit, 3- bit counters	24.	o design a 4-bit SISO, SIPO, PISO, PIPO shift registers using JK/D Flip Flops & verification of their operations (Gr-B)
	36.	Mod-N or Divide by N counters: Examples with truth Table and diagram		
13 th	37.	Decade Counter(both Synchronous & Asynchronous): Design	25.	To design a 4-bit SISO, SIPO, PISO, PIPO shift registers using JK/D Flip Flops & verification of their operations (Gr-A)
	38.	Up/Down Asynchronous and Synchronous Counters	26.	o design a 4-bit SISO, SIPO, PISO, PIPC shift registers using JK/D Flip Flops &
	39.	Ring Counter and Johnson Counter		verification of their operations (Gr-B)
14 th	40.	2 nd Sessional Test	27.	Lab Performance & Viva-Voce (Gr-A)
	41.	Discussion on II- sessional	28.	Lab Performance & Viva-Voce (Gr-B)
	42.	Shift Register: Introduction & basic Concept of shifting Left and Right, Types		
15 th	43.	SISO, SIPO: Explanation with block diagram & Truth Table	29.	To design a 4-bit Ring Counter and verify its operations(Gr-A)
	44.	PISO & PIPO: Explanation with block diagram & Truth Table	30.	To design a 4-bit Ring Counter and verify its operations(Gr-B)
	45.	Universal Shift Register		
-	46.	A/D & D/A Converters: Introduction & working Principle	31.	To design a 4-bit Ring Counter and verify its operations(Gr-A)
	47.	Different Techniques of A/D conversion & Study of Stair Step Ramp A/D converter	32.	To design a 4-bit Ring Counter and verify its operations(Gr-B)
	48.	Study of Dual Slope and Successive Approximation A/D converter		
17 th	49.	Detail study of Binary Weighted D/A converter	33.	Use of Asynchronous Counter IC'S (7490 OR 7493) (Gr-A)
	50.	Detail Study of R/2R Ladder D/A converter	34.	Use of Asynchronous Counter IC'S (7490 OR 7493) (Gr-B)
	51.	Applications of A/D & D/A converter		
18 th	52.	Semiconductor memories : Memory Organization, Classification of Semiconductor memories	35.	Lab Performance & Viva-Voce (Gr-A)
	53.	RAM: DDRAM, SRAM, ROM: PROM, EPROM,EEPROM	36.	Lab Performance & Viva-Voce (Gr-B)
	54.	Introduction to 74181 IC]	
	55.	3 rd Sessional Test		