
Introduction to Data

Structures and Algorithms
Data Structure is a way of collecting and organising data in such a way that

we can perform operations on these data in an effective way. Data

Structures is about rendering data elements in terms of some relationship,

for better organization and storage. For example, we have some data

which has, player's name "Virat" and age 26. Here "Virat" is of String data

type and 26 is of integer data type.

We can organize this data as a record like Player record, which will have

both player's name and age in it. Now we can collect and store player's

records in a file or database as a data structure. For example: "Dhoni" 30,

"Gambhir" 31, "Sehwag" 33

If you are aware of Object Oriented programming concepts, then a class

also does the same thing, it collects different type of data under one single

entity. The only difference being, data structures provides for techniques to

access and manipulate data efficiently.

In simple language, Data Structures are structures programmed to store

ordered data, so that various operations can be performed on it easily. It

represents the knowledge of data to be organized in memory. It should be

designed and implemented in such a way that it reduces the complexity

and increases the efficiency.

Basic types of Data Structures
As we have discussed above, anything that can store data can be called as

a data structure, hence Integer, Float, Boolean, Char etc, all are data

structures. They are known as Primitive Data Structures.

Then we also have some complex Data Structures, which are used to store

large and connected data. Some example of Abstract Data Structure are :

 Linked List

 Tree

 Graph

 Stack, Queue etc.

All these data structures allow us to perform different operations on data.

We select these data structures based on which type of operation is

required. We will look into these data structures in more details in our later

lessons.

The data structures can also be classified on the basis of the following

characteristics:

Characterstic Description

Linear
In Linear data structures,the data items are arranged in a linear

sequence. Example: Array

Non-Linear
In Non-Linear data structures,the data items are not in

sequence. Example: Tree, Graph

Homogeneous
In homogeneous data structures,all the elements are of same

type. Example: Array

Non-

Homogeneous

In Non-Homogeneous data structure, the elements may or may

not be of the same type. Example: Structures

Static

Static data structures are those whose sizes and structures

associated memory locations are fixed, at compile time.

Example: Array

Dynamic

Dynamic structures are those which expands or shrinks

depending upon the program need and its execution. Also, their

associated memory locations changes. Example: Linked List

created using pointers

What is an Algorithm ?

An algorithm is a finite set of instructions or logic, written in order, to

accomplish a certain predefined task. Algorithm is not the complete code or

program, it is just the core logic(solution) of a problem, which can be

expressed either as an informal high level description as pseudocode or

using a flowchart.

Every Algorithm must satisfy the following properties:

1. Input- There should be 0 or more inputs supplied externally to the

algorithm.

2. Output- There should be atleast 1 output obtained.

3. Definiteness- Every step of the algorithm should be clear and well

defined.

4. Finiteness- The algorithm should have finite number of steps.

1. Correctness- Every step of the algorithm must generate a correct output.

An algorithm is said to be efficient and fast, if it takes less time to execute

and consumes less memory space. The performance of an algorithm is

measured on the basis of following properties :

1. Time Complexity

2. Space Complexity

Space Complexity
Its the amount of memory space required by the algorithm, during the

course of its execution. Space complexity must be taken seriously for multi-

user systems and in situations where limited memory is available.

An algorithm generally requires space for following components :

 Instruction Space: Its the space required to store the executable version

of the program. This space is fixed, but varies depending upon the number

of lines of code in the program.

 Data Space: Its the space required to store all the constants and

variables(including temporary variables) value.

Data Structures and Algorithms

- Arrays
Array is a container which can hold a fix number of items and these

items should be of the same type. Most of the data structures make

use of arrays to implement their algorithms. Following are the

important terms to understand the concept of Array.

 Element − Each item stored in an array is called an element.

 Index − Each location of an element in an array has a numerical

index, which is used to identify the element.

Array Representation
Arrays can be declared in various ways in different languages. For

illustration, let's take C array declaration.

As per the above illustration, following are the important points to be

considered.

 Index starts with 0.

 Array length is 10 which means it can store 10 elements.

 Each element can be accessed via its index. For example, we can

fetch an element at index 6 as 9.

Basic Operations

Following are the basic operations supported by an array.

 Traverse − print all the array elements one by one.

 Insertion − Adds an element at the given index.

 Deletion − Deletes an element at the given index.

 Search − Searches an element using the given index or by the

value.

 Update − Updates an element at the given index.

In C, when an array is initialized with size, then it assigns defaults

values to its elements in following order.

Data Type Default Value

bool false

char 0

int 0

float 0.0

double 0.0f

void

wchar_t 0

Insertion Operation

Insert operation is to insert one or more data elements into an array.

Based on the requirement, a new element can be added at the

beginning, end, or any given index of array.

Here, we see a practical implementation of insertion operation, where

we add data at the end of the array −

Algorithm

Let Array be a linear unordered array of MAX elements.

Example

Result

Let LA be a Linear Array (unordered) with N elements and K is a

positive integer such that K<=N. Following is the algorithm where

ITEM is inserted into the Kth position of LA −

1. Start

2. Set J = N

3. Set N = N+1

4. Repeat steps 5 and 6 while J >= K

5. Set LA[J+1] = LA[J]

6. Set J = J-1

7. Set LA[K] = ITEM

8. Stop

Example

Following is the implementation of the above algorithm −

#include <stdio.h>

main() {

 int LA[] = {1,3,5,7,8};

 int item = 10, k = 3, n = 5;

 int i = 0, j = n;

 printf("The original array elements are :\n");

 for(i = 0; i<n; i++) {

 printf("LA[%d] = %d \n", i, LA[i]);

 }

 n = n + 1;

 while(j >= k) {

 LA[j+1] = LA[j];

 j = j - 1;

 }

 LA[k] = item;

 printf("The array elements after insertion :\n");

 for(i = 0; i<n; i++) {

 printf("LA[%d] = %d \n", i, LA[i]);

When we compile and execute the above program, it produces the following

result −

Output

The original array elements are :

LA[0] = 1

LA[1] = 3

LA[2] = 5

LA[3] = 7

LA[4] = 8

The array elements after insertion :

LA[0] = 1

LA[1] = 3

LA[2] = 5

LA[3] = 10

LA[4] = 7

LA[5] = 8

For other variations of array insertion operation click here

https://www.tutorialspoint.com/data_structures_algorithms/array_insertion_algorithm.htm

Deletion Operation

Deletion refers to removing an existing element from the array and re-

organizing all elements of an array.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such

that K<=N. Following is the algorithm to delete an element available at the

Kth position of LA.

1. Start

2. Set J = K

3. Repeat steps 4 and 5 while J < N

4. Set LA[J] = LA[J + 1]

5. Set J = J+1

6. Set N = N-1

7. Stop

Example

Following is the implementation of the above algorithm −

#include <stdio.h>

main() {

 int LA[] = {1,3,5,7,8};

 int k = 3, n = 5;

 int i, j;

 printf("The original array elements are :\n");

 for(i = 0; i<n; i++) {

 printf("LA[%d] = %d \n", i, LA[i]);

 }

 j = k;

 while(j < n) {

 LA[j-1] = LA[j];

 j = j + 1;

 }

 n = n -1;

 printf("The array elements after deletion :\n");

 for(i = 0; i<n; i++) {

 printf("LA[%d] = %d \n", i, LA[i]);

 }

}

When we compile and execute the above program, it produces the following

result −

Output

The original array elements are :

LA[0] = 1

LA[1] = 3

LA[2] = 5

LA[3] = 7

LA[4] = 8

The array elements after deletion :

LA[0] = 1

LA[1] = 3

LA[2] = 7

LA[3] = 8

Search Operation

You can perform a search for an array element based on its value or its index.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such

that K<=N. Following is the algorithm to find an element with a value of ITEM

using sequential search.

1. Start

2. Set J = 0

3. Repeat steps 4 and 5 while J < N

4. IF LA[J] is equal ITEM THEN GOTO STEP 6

5. Set J = J +1

6. PRINT J, ITEM

7. Stop

Example

Following is the implementation of the above algorithm −

#include <stdio.h>

main() {

 int LA[] = {1,3,5,7,8};

 int item = 5, n = 5;

 int i = 0, j = 0;

 printf("The original array elements are :\n");

 for(i = 0; i<n; i++) {

 printf("LA[%d] = %d \n", i, LA[i]);

 }

 while(j < n){

 if(LA[j] == item) {

 break;

 }

 j = j + 1;

 }

 printf("Found element %d at position %d\n", item, j+1);

}

When we compile and execute the above program, it produces the following

result −

Output

The original array elements are :

LA[0] = 1

LA[1] = 3

LA[2] = 5

LA[3] = 7

LA[4] = 8

Found element 5 at position 3

Data Structure and Algorithms

- Linked List
A linked list is a sequence of data structures, which are connected

together via links.

Linked List is a sequence of links which contains items. Each link

contains a connection to another link. Linked list is the second most-

used data structure after array. Following are the important terms to

understand the concept of Linked List.

 Link − Each link of a linked list can store a data called an

element.

 Next − Each link of a linked list contains a link to the next link

called Next.

 LinkedList − A Linked List contains the connection link to the

first link called First.

Linked List Representation

Linked list can be visualized as a chain of nodes, where every node

points to the next node.

As per the above illustration, following are the important points to be

considered.

 Linked List contains a link element called first.

 Each link carries a data field(s) and a link field called next.

 Each link is linked with its next link using its next link.

 Last link carries a link as null to mark the end of the list.

Types of Linked List
Following are the various types of linked list.

 Simple Linked List − Item navigation is forward only.

 Doubly Linked List − Items can be navigated forward and

backward.

 Circular Linked List − Last item contains link of the first

element as next and the first element has a link to the last

element as previous.

Basic Operations

Following are the basic operations supported by a list.

 Insertion − Adds an element at the beginning of the list.

 Deletion − Deletes an element at the beginning of the list.

 Display − Displays the complete list.

 Search − Searches an element using the given key.

 Delete − Deletes an element using the given key.

Insertion Operation

Adding a new node in linked list is a more than one step activity. We

shall learn this with diagrams here. First, create a node using the

same structure and find the location where it has to be inserted.

Imagine that we are inserting a node B (NewNode), between A

(LeftNode) and C (RightNode). Then point B.next to C −

NewNode.next −> RightNode;

It should look like this −

Now, the next node at the left should point to the new node.

LeftNode.next −> NewNode;

This will put the new node in the middle of the two. The new list

should look like this −

Similar steps should be taken if the node is being inserted at the

beginning of the list. While inserting it at the end, the second last

node of the list should point to the new node and the new node will

point to NULL.

Deletion Operation

Deletion is also a more than one step process. We shall learn with

pictorial representation. First, locate the target node to be removed,

by using searching algorithms.

The left (previous) node of the target node now should point to the

next node of the target node −

LeftNode.next −> TargetNode.next;

This will remove the link that was pointing to the target node. Now,

using the following code, we will remove what the target node is

pointing at.

TargetNode.next −> NULL;

We need to use the deleted node. We can keep that in memory

otherwise we can simply deallocate memory and wipe off the target

node completely.

Reverse Operation

This operation is a thorough one. We need to make the last node to

be pointed by the head node and reverse the whole linked list.

First, we traverse to the end of the list. It should be pointing to NULL.

Now, we shall make it point to its previous node −

We have to make sure that the last node is not the lost node. So we'll

have some temp node, which looks like the head node pointing to the

last node. Now, we shall make all left side nodes point to their

previous nodes one by one.

Except the node (first node) pointed by the head node, all nodes

should point to their predecessor, making them their new successor.

The first node will point to NULL.

We'll make the head node point to the new first node by using the

temp node.

The linked list is now reversed. To see linked list implementation in C

programming language, please click here.

https://www.tutorialspoint.com/data_structures_algorithms/linked_list_program_in_c.htm

Data Structure and Algorithms

- Queue
Queue is an abstract data structure, somewhat similar to Stacks.

Unlike stacks, a queue is open at both its ends. One end is always

used to insert data (enqueue) and the other is used to remove data

(dequeue). Queue follows First-In-First-Out methodology, i.e., the

data item stored first will be accessed first.

A real-world example of queue can be a single-lane one-way road,

where the vehicle enters first, exits first. More real-world examples

can be seen as queues at the ticket windows and bus-stops.

Queue Representation
As we now understand that in queue, we access both ends for

different reasons. The following diagram given below tries to explain

queue representation as data structure −

As in stacks, a queue can also be implemented using Arrays, Linked-

lists, Pointers and Structures. For the sake of simplicity, we shall

implement queues using one-dimensional array.

Basic Operations

Queue operations may involve initializing or defining the queue,

utilizing it, and then completely erasing it from the memory. Here we

shall try to understand the basic operations associated with queues −

 enqueue() − add (store) an item to the queue.

 dequeue() − remove (access) an item from the queue.

Few more functions are required to make the above-mentioned queue

operation efficient. These are −

 peek() − Gets the element at the front of the queue without

removing it.

 isfull() − Checks if the queue is full.

 isempty() − Checks if the queue is empty.

In queue, we always dequeue (or access) data, pointed by front

pointer and while enqueing (or storing) data in the queue we take

help of rear pointer.

Let's first learn about supportive functions of a queue −

peek()

This function helps to see the data at the front of the queue. The

algorithm of peek() function is as follows −

Algorithm

begin procedure peek

 return queue[front]

end procedure

Implementation of peek() function in C programming language −

Example

int peek() {

 return queue[front];

}

isfull()

As we are using single dimension array to implement queue, we just

check for the rear pointer to reach at MAXSIZE to determine that the

queue is full. In case we maintain the queue in a circular linked-list,

the algorithm will differ. Algorithm of isfull() function −

Algorithm

begin procedure isfull

 if rear equals to MAXSIZE

 return true

 else

 return false

 endif

end procedure

Implementation of isfull() function in C programming language −

Example

bool isfull() {

 if(rear == MAXSIZE - 1)

 return true;

 else

 return false;

}

isempty()

Algorithm of isempty() function −

Algorithm

begin procedure isempty

 if front is less than MIN OR front is greater than rear

 return true

 else

 return false

 endif

end procedure

If the value of front is less than MIN or 0, it tells that the queue is

not yet initialized, hence empty.

Here's the C programming code −

Example

bool isempty() {

 if(front < 0 || front > rear)

 return true;

 else

 return false;

}

Enqueue Operation

Queues maintain two data pointers, front and rear. Therefore, its

operations are comparatively difficult to implement than that of

stacks.

The following steps should be taken to enqueue (insert) data into a

queue −

 Step 1 − Check if the queue is full.

 Step 2 − If the queue is full, produce overflow error and exit.

 Step 3 − If the queue is not full, increment rear pointer to point

the next empty space.

 Step 4 − Add data element to the queue location, where the

rear is pointing.

 Step 5 − return success.

Sometimes, we also check to see if a queue is initialized or not, to

handle any unforeseen situations.

Algorithm for enqueue operation

procedure enqueue(data)

 if queue is full

 return overflow

 endif

 rear ← rear + 1

 queue[rear] ← data

 return true

end procedure

Implementation of enqueue() in C programming language −

Example

int enqueue(int data)

 if(isfull())

 return 0;

 rear = rear + 1;

 queue[rear] = data;

 return 1;

end procedure

Dequeue Operation
Accessing data from the queue is a process of two tasks − access the

data where front is pointing and remove the data after access. The

following steps are taken to perform dequeue operation −

 Step 1 − Check if the queue is empty.

 Step 2 − If the queue is empty, produce underflow error and

exit.

 Step 3 − If the queue is not empty, access the data where front

is pointing.

 Step 4 − Increment front pointer to point to the next available

data element.

 Step 5 − Return success.

Algorithm for dequeue operation

procedure dequeue

 if queue is empty

 return underflow

 end if

 data = queue[front]

 front ← front + 1

 return true

end procedure

Implementation of dequeue() in C programming language −

Example

int dequeue() {

 if(isempty())

 return 0;

 int data = queue[front];

 front = front + 1;

 return data;

}

For a complete Queue program in C programming language, please

click here.

Previous Page

Print

Next Page

Advertisements

https://www.tutorialspoint.com/data_structures_algorithms/queue_program_in_c.htm
https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.htm
https://www.tutorialspoint.com/cgi-bin/printpage.cgi
https://www.tutorialspoint.com/data_structures_algorithms/linear_search_algorithm.htm

