

1 Notes By:- Er. Hitesh Kumar

UNIT -1 Introduction

Introduction

A database-management system (DBMS) is a collection of interrelated data and a set

of programs to access those data. This is a collection of related data with an implicit

meaning and hence is a database. The collection of data, usually referred to as the

database, contains information relevant to an enterprise. The primary goal of a DBMS is to

provide a way to store and retrieve database information that is both convenient and efficient.

By data, we mean known facts that can be recorded and that have implicit meaning.

Database systems are designed to manage large bodies of information. Management of

data involves both defining structures for storage of information and providing

mechanisms for the manipulation of information. In addition, the database system must

ensure the safety of the information stored, despite system crashes or attempts at

unauthorized access. If data are to be shared among several users, the system must avoid

possible anomalous results.

Data Processing Vs. Data Management Systems

Although Data Processing and Data Management Systems both refer to functions that take

raw data and transform it into usable information, the usage of the terms is very

different. Data Processing is the term generally used to describe what was done by large

mainframe computers from the late 1940's until the early 1980's (and which continues

to be done in most large organizations to a greater or lesser extent even today): large

volumes of raw transaction data fed into programs that update a master file, with fixed-format

reports written to paper.

The term Data Management Systems refers to an expansion of this concept, where the raw

data, previously copied manually from paper to punched cards, and later into data-entry

terminals, is now fed into the system from a variety of sources, including ATMs, EFT, and direct

customer entry through the Internet. The master file concept has been largely displaced by

database management systems, and static reporting replaced or augmented by ad-hoc reporting

and direct inquiry, including downloading of data by customers. The ubiquity of the Internet and

the Personal Computer have been the driving force in the transformation of Data Processing to

the more global concept of Data anagement Systems.

File Oriented Approach

The earliest business computer systems were used to process business records and

produce information. They were generally faster and more accurate than equivalent manual

systems. These systems stored groups of records in separate files, and so they were called file

processing systems. In a typical file processing systems, each department has its own

files, designed specifically for those applications. The department itself working with the data

processing staff, sets policies or standards for the format and maintenance of its files.

Programs are dependent on the files and vice-versa; that is, when the physical format of the file

is changed, the program has also to be changed. Although the traditional file oriented approach

2 Notes By:- Er. Hitesh Kumar

to information processing is still widely used, it does have some very important disadvantages.

Characteristics

Traditionally data was organized in file formats. DBMS was all new concepts then and all the

research was done to make it to overcome all the deficiencies in traditional style of data

management. Modern DBMS has the following characteristics:

 Real-world entity: Modern DBMS are more realistic and uses real world entities to

design its architecture. It uses the behavior and attributes too. For example, a school

database may use student as entity and their age as their attribute.

 Relation-based tables: DBMS allows entities and relations among them to form as tables.

This eases the concept of data saving. A user can understand the architecture of

database just by looking at table names etc.

 Isolation of data and application: A database system is entirely different than its data.

Where database is said to active entity, data is said to be passive one on which the

database works and organizes. DBMS also stores metadata which is data about data, to

ease its own process.

 Less redundancy: DBMS follows rules of normalization, which splits a relation when

any of its attributes is having redundancy in values. Following normalization,

which itself is a mathematically rich and scientific process, make the entire

database to contain as less redundancy as possible.

 Consistency: DBMS always enjoy the state on consistency where the previous form of

data storing applications like file processing does not guarantee this. Consistency is a

state where every relation in database remains consistent. There exist methods and

techniques, which can detect attempt of leaving database in inconsistent state.

 Query Language: DBMS is equipped with query language, which makes it more efficient

to retrieve and manipulate data. A user can apply as many and different filtering options,

as he or she wants. Traditionally it was not possible where file-processing system was used.

 ACID Properties: DBMS follows the concepts for ACID properties, which stands

for Atomicity, Consistency, Isolation and Durability. These concepts are applied on

transactions, which manipulate data in database. ACID properties maintains database in

healthy state in multi- transactional environment and in case of failure.

 Multiuser and Concurrent Access: DBMS support multi-user environment and allows

them to access and manipulate data in parallel. Though there are restrictions on

transactions when they attempt to handle same data item, but users are always unaware of

them.

3 Notes By:- Er. Hitesh Kumar

 Multiple views: DBMS offers multiples views for different users. A user who is in

sales department will have a different view of database than a person working in

production department. This enables user to have a concentrate view of database

according to their requirements.

 Security: Features like multiple views offers security at some extent where users are unable
to access data of other users and departments. DBMS offers methods to impose
constraints while entering data into database and retrieving data at later stage. DBMS
offers many different levels of security features, which enables multiple users to have
different view with different features.

 Concurrent Use: A database system allows several users to access the database

concurrently. Answering different questions from different users with the same (base)

data is a central aspect of an information system. Such concurrent use of data increases

the economy of a system.

 Structured and Described Data : A fundamental feature of the database approach is

that the database systems do not only contain the data but also the complete definition

and description of these data. These descriptions are basically details about the

extent, the structure, the type and the format of all data and, additionally, the

relationship between the data. This kind of stored data is called metadata ("data about

data").

 Separation of Data and Applications: As described in the feature structured data the

structure of a database is described through metadata which is also stored in the

database. An application software does not need any knowledge about the physical

data storage like encoding, format, storage place, etc. It only communicates with the

management system f a database (DBMS) via a standardized interface with the help of a

standardized language like SQL.

 Data Integrity: Data integrity is a byword for the quality and the reliability of the data of a

database system. In a broader sense data integrity includes also the protection of the

database from unauthorized access (confidentiality) and un authorized changes.

 Transactions: A transaction is a bundle of actions which are done within a database

to bring it from one consistent state to a new consistent state.

 Data Persistence: Data persistence means that in a DBMS all data is maintained as

long as it is not deleted explicitly. The life span of data needs to be determined directly or

indirectly be the user and must not be dependent on system features. Additionally data

once stored in a database must not be lost. Changes of a database which are done by a

transaction are persistent. When a transaction is finished even a system crash cannot put the

data in danger.

Advantages and Disadvantages of a DBMS

4 Notes By:- Er. Hitesh Kumar

Using a DBMS to manage data has many advantages:

Data independence: Application programs should be as independent as possible from details of

data representation and storage. The DBMS can provide an abstract view of the data to insulate

application code from such details.

Efficient data access: A DBMS utilizes a variety of sophisticated techniques to store and

retrieve data efficiently. This feature is especially important if the data is stored on external

storage devices.

Data integrity and security: If data is always accessed through the DBMS, the DBMS can

enforce integrity constraints on the data. For example, before inserting salary information for an

employee, the DBMS can check that the department budget is not exceeded. Also, the DBMS

can enforce access controls that govern what data is visible to different classes of users.

Data administration: When several users share the data, centralizing the administration of data

can offer significant improvements. Experienced professionals, who understand the nature of the

data being managed, and how different groups of users use it, can be responsible for organizing

the data representation to minimize redundancy and fine-tuning the storage of the data to make

retrieval efficient.

Concurrent access and crash recovery: A DBMS schedules concurrent accesses to the data in

such a manner that users can think of the data as being accessed by only one user at a time.

Further, the DBMS protects users from the effects of system failures.

Reduced application development time: Clearly, the DBMS supports many important

functions that are common to many applications accessing data stored in the DBMS. This, in

conjunction with the high-level interface to the data, facilitates quick development of

applications. Such applications are also likely to be more robust than applications developed

from scratch because many important tasks are handled by the DBMS instead of being

implemented by the application.

Disadvantages of a DBMS

Danger of a Overkill: For small and simple applications for single users a database system is

often not advisable.

Complexity: A database system creates additional complexity and requirements. The supply and

operation of a database management system with several users and databases is quite costly and

demanding.

Qualified Personnel: The professional operation of a database system requires appropriately

trained staff. Without a qualified database administrator nothing will work for long.

Costs: Through the use of a database system new costs are generated for the system itself but

also for additional hardware and the more complex handling of the system.

Lower Efficiency: A database system is a multi-use software which is often less efficient than

specialized software which is produced and optimized exactly for one problem.

Instances and Schemas

Databases change over time as information is inserted and deleted. The collection of information

5 Notes By:- Er. Hitesh Kumar

stored in the database at a particular moment is called an instance of the database. The overall

design of the database is called the database schema. Schemas are changed infrequently, if at all.

The concept of database schemas and instances can be understood by analogy to a program

written in a programming language. A database schema corresponds to the variable declarations

(along with associated type definitions) in a program. Each variable has a particular value at a

given instant. The values of the variables in a program at a point in time correspond to an

instance of a database schema. Therefore Database schema skeleton structure of and it represents

the logical view of entire database. It tells about how the data is organized and how relation

among them is associated. It formulates all database constraints that would be put on data in

relations, which resides in database. A database schema defines its entities and the relationship

among them. Database schema is a descriptive detail of the database, which can be depicted by

means of schema diagrams. All these activities are done by database designer to help

programmers in order to give some ease of understanding all aspect of database.

Database systems have several schemas, partitioned according to the levels of abstraction. The

physical schema describes the database design at the physical level, while the logical schema

describes the database design at the logical level. A database may also have several schemas at

the view level, sometimes called sub schemas, that describe different views of the database. Of

these, the logical schema is by far the most important, in terms of its effect on application

programs, since programmers construct applications by using the logical schema. The physical

schema is hidden beneath the logical schema, and can usually be changed easily without

affecting application programs. Application programs are said to exhibit physical data

independence if they do not depend on the physical schema, and thus need not be rewritten if

the physical schema changes.

 .

Database schema skeleton structure of and it represents the logical view of entire database. It

tells about how the data is organized and how relation among them is associated. It formulates all

database constraints that would be put on data in relations, which resides in database.

6 Notes By:- Er. Hitesh Kumar

UNIT-2 Data Base Sysytem Concepts & Architecture

DBMS Data Models

Underlying the structure of a database is the data model: a collection of conceptual tools for

describing data, data relationships, data semantics, and consistency constraints.

To illustrate the concept of a data model, we outline two data models in this section: the entity-

relationship model and the relational model. Both provide a way to describe the design of a

database at the logical level. Data model tells how the logical structure of a database is modeled.

Data Models are fundamental entities to introduce abstraction in DBMS. Data models define

how data is connected to each other and how it will be processed and stored inside the system.

The very first data model could be flat data-models where all the data used to be kept in same

plane. Because earlier data models were not so scientific they were prone to introduce lots of

duplication and update anomalies.

Other Data Models

The object-oriented data model is another data model that has seen increasing attention.

The object-oriented model can be seen as extending the E-R model with notions object-oriented

data model. The object-relational data model combines features of the object-oriented data

model and relational data model. Semi structured data models permit the specification of data

where individual data items of the same type may have different sets of attributes. This is in

contrast with the data models mentioned earlier, where every data item of a particular type must

have the same set of attributes. The extensible markup language (XML) is widely used to

represent semi structured data.

Historically, two other data models, the network data model and the hierarchical data model,

preceded the relational data model. These models were tied closely to the underlying

implementation, and complicated the task of modeling data. As a result they are little used now,

except in old database code that is still in service in some places.

DBMS Architecture

Three important characteristics of the database approach are (1) insulation of programs and data

(program-data and program-operation independence); (2) support of multiple user views; and (3)

use of a catalog to store the database description (schema). In this section we specify architecture

for database systems, called the three-schema architecture, which was proposed to help

achieve and visualize these characteristics.

7 Notes By:- Er. Hitesh Kumar

The Three-Schema Architecture

The goal of the three-schema architecture, illustrated in Figure is to separate the user applications

and the physical database. In this architecture, schemas can be defined at the following three

levels:

The internal level has an internal schema, which describes the physical storage structure of the

database. The internal schema uses a physical data model and describes the complete details of

data storage and access paths for the database.

The conceptual level has a conceptual schema, which describes the structure of the whole

database for a community of users. The conceptual schema hides the details of physical storage

structures and concentrates on describing entities, data types, relationships, user operations, and

constraints. A high-level data model or an implementation data model can be used at this level.

The external or view level includes a number of external schemas or user views. Each external

schema describes the part of the database that a particular user group is interested in and hides

the rest of the database from that user group. A high-level data model or an implementation data

model can be used at this level.

The three-schema architecture is a convenient tool for the user to visualize the schema levels in a

database system. Most DBMSs do not separate the three levels completely, but support the three-

schema architecture to some extent. Some DBMSs may include physical-level details in the

conceptual schema. In most DBMSs that support user views,

external schemas are specified in the same data model that describes the conceptual-level

information. Some DBMSs allow different data models to be used at the conceptual and external

levels.

Notice that the three schemas are only descriptions of data; the only data that actually exists is at

the physical level. In a DBMS based on the three-schema architecture, each user group refers

only to its own external schema. Hence, the DBMS must transform a request specified on an

external schema into a request against the conceptual schema, and then into a request on the

internal schema for processing over the stored database. If the request is a database retrieval, the

data extracted from the stored database must be reformatted to match the user‘s external view.

The processes of transforming requests and results between levels are called mappings. These

mappings may be time-consuming, so some DBMSs—especially those that are meant to support

small databases—do not support external views. Even in such systems, however, a certain

amount of mapping is necessary to transform requests between the conceptual and internal

levels.

The design of a Database Management System highly depends on its architecture. It can be

centralized or decentralized or hierarchical. DBMS architecture can be seen as single tier or

8 Notes By:- Er. Hitesh Kumar

multi tier. n-tier architecture divides the whole system into related but independent n modules,

which can be independently modified, altered, changed or replaced.

In 1-tier architecture, DBMS is the only entity where user directly sits on DBMS and uses it.

Any changes done here will directly be done on DBMS itself. It does not provide handy tools for

end users and preferably database designer and programmers use single tier architecture.

If the architecture of DBMS is 2-tier then must have some application, which uses the DBMS.

Programmers use 2-tier architecture where they access DBMS by means of application. Here

application tier is entirely independent of database in term of operation, design and

programming.

3-tier architecture

Most widely used architecture is 3-tier architecture. 3-tier architecture separates it tier from each

other on basis of users. It is described as follows:

Database Languages

A database system provides a data definition language to specify the database schema and a data

manipulation language to express database queries and updates. In practice, the data definition and data

manipulation languages are not two separate languages; instead they simply form parts of a single

database language, such as the widely used SQL language.

9 Notes By:- Er. Hitesh Kumar

Data-Definition Language

We specify a database schema by a set of definitions expressed by a special language called a

data-definition language (DDL). For instance, the following statement in the SQL language

defines the account table:

create table account (account-number char(10), balance integer)

Execution of the above DDL statement creates the account table. In addition, it updates a

special set of tables called the data dictionary or data directory. A data dictionary contains

metadata—that is, data about data. The schema of a table is an example of metadata. A database

system consults the data dictionary before reading or modifying actual data. We specify the

storage structure and access methods used by the database system by a set of statements in a

special type of DDL called a data storage and definition language.

These statements define the implementation details of the database schemas, which are

usually hidden from the users. The data values stored in the database must satisfy certain

consistency constraints. For example, suppose the balance on an account should not fall below

$100. The DDL provides facilities to specify such constraints. The database systems check these

Constraints every time the database is updated.

Data-Manipulation Language

Data manipulation is The retrieval of information stored in the database The insertion of new

information into the database The deletion of information from the database The modification of

information stored in the database A data-manipulation language (DML) is a language that

enables users to access or manipulate data as organized by the appropriate data model. There are

basically two types:

Procedural DMLs require a user to specify what data are needed and how to get those data.

Declarative DMLs (also referred to as nonprocedural DMLs) require a user to specify what data

are needed without specifying how to get those data. Declarative DMLs are usually easier to

learn and use than are procedural DMLs. However, since a user does not have to specify how to

get the data, the database system has to figure out an efficient means of accessing data. The

DML component of the SQL language is nonprocedural. A query is a statement requesting the

retrieval of information. The portion of a DML that involves information retrieval is called a

query language. Although technically incorrect, it is common practice to use the terms query

language and data manipulation language synonymously. This query in the SQL language finds

the name of the customer whose customer-id is 192-83-7465:

Select customer. Customer-name from customer where customer. Customer-id = 192-83-

7465

10 Notes By:- Er. Hitesh Kumar

The query specifies that those rows from the table customer where the customer-id is 192-83-

7465 must be retrieved, and the customer-name attribute of these rows must be displayed.

Queries may involve information from more than one table. For instance, the following query

finds the balance of all accounts owned by the customer with customer id 192-83-7465.

select account.balance from depositor, account where depositor.customer-id = 192-83-7465

and depositor.account-number = account.account-number

There are a number of database query languages in use, either commercially or experimentally.

The levels of abstraction apply not only to defining or structuring data, but also to manipulating

data. At the physical level, we must define algorithms that allow efficient access to data. At

higher levels of abstraction, we emphasize ease of use. The goal is to allow humans to interact

efficiently with the system. The query processor component of the database system translates

DML queries into sequences of actions at the physical level of the database system.

Data Dictionary

We can define a data dictionary as a DBMS component that stores the definition of data

characteristics and relationships. You may recall that such ―data about data‖ were labeled

metadata. The DBMS data dictionary provides the DBMS with its self describing characteristic.

In effect, the data dictionary resembles and X-ray of the company‘s entire data set, and is a

crucial element in the data administration function. The two main types of data dictionary exist,

integrated and stand alone. An integrated data dictionary is included with the DBMS. For

example, all relational DBMSs include a built in data dictionary or system catalog that is

frequently accessed and updated by the RDBMS. Other DBMSs especially older types, do not

have a built in data dictionary instead the DBA may use third party stand alone data dictionary

systems. Data dictionaries can also be classified as active or passive. An active data dictionary is

automatically updated by the DBMS with every database access, thereby keeping its 15access

information up-to-date. A passive data dictionary is not updated automatically and usually

requires a batch process to be run. Data dictionary access information is normally used by the

DBMS for query optimization purpose. The data dictionary‘s main function is to store the

description of all objects that interact with the database. Integrated data dictionaries tend to limit

their metadata to the data managed by the DBMS. Stand alone data dictionary systems are more

usually more flexible and allow the DBA to describe and manage all the organization‘s data,

whether or not they are computerized. Whatever the data dictionary‘s format, its existence

provides database designers and end users with a much improved ability to communicate. In

addition, the data dictionary is the tool that helps the DBA to resolve data conflicts. Although,

there is no standard format for the information stored in the data dictionary several features are

common. For example, the data dictionary typically stores descriptions of all:

11 Notes By:- Er. Hitesh Kumar

• Data elements that are define in all tables of all databases. Specifically the data dictionary stores the

name, datatypes, display formats, internal storage formats, and validation rules. The data dictionary tells

where an element is used, by whom it is used and so on.

• Tables define in all databases. For example, the data dictionary is likely to store the name of the table

creator, the date of creation access authorizations, the number of columns, and so on.

• Indexes define for each database tables. For each index the DBMS stores at least the index name the

attributes used, the location, specific index characteristics and the creation date. •Define databases: who

created each database, the date of creation where the database is located, who the DBA is and so on.

• End users and The Administrators of the data base

• Programs that access the database including screen formats, report formats Application

formats, SQL queries and so on.

• Access authorization for all users of all databases.

• Relationships among data elements which elements are involved: whether the relationship is

mandatory or optional, the connectivity and cardinality and so on.

If the data dictionary can be organized to include data external to the DBMS itself, it becomes an specially

flexible to for more general corporate resource management. The management of such

an extensive data dictionary, thus, makes it possible to manage the use and allocation of all of the

organization information regardless whether it has its roots in the database data. This is why some

managers consider the data dictionary to be the key element of the information resource management

function. And this is also why the data dictionary might be described as the information resource

dictionary. The metadata stored in the data dictionary is often the bases for monitoring the database use

and assignment of access rights to the database users. The information stored in the database is

usually based on the relational table format, thus , enabling

the DBA to query the database with SQL command. For example, SQL command can be used to

extract information about the users of the specific table or about the access rights of a particular users.

12 Notes By:- Er. Hitesh Kumar

UNIT-3 ER Model

Introduction
A data model is a conceptual representation of the data structures that are required by a database. The
data structures include the data objects, the associations between data objects, and the rules which govern

operations on the objects. As the name implies, the data model focuses on what data is required and how

it should be organized rather than what operations will be performed on the data. To use a common

analogy, the data model is equivalent to an architect's building plans. A data model is independent of

hardware or software constraints. Rather than try to represent the data as a database would see it, the data

model focuses on representing the data as the user sees it in the "real world". It serves as a bridge

between the concepts that make up real-world events and processes and the physical representation of

those concepts in a database.

Components of a Data Model

The data model gets its inputs from the planning and analysis stage. Here the modeler, along with

analysts, collects information about the requirements of the database by reviewing existing

documentation and interviewing end-users. The data model has two outputs. The first is an entity-

relationship diagram which represents the data structures in a pictorial form. Because the diagram is

easily learned, it is valuable tool to communicate the model to the end-user. The second component is a

data document. This a document that describes in detail the data objects, relationships, and rules required

by the database. The dictionary provides the detail required by the database developer to construct the

physical database.

Why is Data Modeling Important?

Data modeling is probably the most labor intensive and d time consuming part of the development

process. Why bother especially if you are pressed for time? A common response by practitioners who

write on the subject is that you should no more build a database without a model than you should build a

house without blueprints. The goal of the data model is to make sure that the all data objects required by

the database are completely and accurately represented. Because the data model uses easily understood

notations and natural language, it can be reviewed and verified as correct by the end-users. The data

model is also detailed enough to be used by the database developers to use as a "blueprint" for building

the physical database. The information contained in the data model will be used to define the relational

tables, primary and foreign keys, stored procedures, and triggers.

13 Notes By:- Er. Hitesh Kumar

Entity-Relationship Model

The entity-relationship (E-R) data model is based on a perception of a real world that consists of a

collection of basic objects, called entities, and of relationships among these objects. An entity is a

―thing‖ or ―object‖ in the real world that is distinguishable from other objects. Entity-Relationship

model is based on the notion of real world entities and relationship among them. While

formulating real-world scenario into database model, ER Model creates entity set, relationship set,

general attributes and constraints. For example, each person is an entity, and bank accounts can be

considered as entities. Entities are described in a database by a set of attributes. For example, the

attributes account-number and balance may describe one particular account in a bank, and they form

attributes of the account entity set. Similarly, attributes customer-name, customer-street address and

customer-city may describe a customer entity.

An extra attribute customer-id is used to uniquely identify customers (since it may be possible to have

two customers with the same name, street address, and city).

A unique customer identifier must be assigned to each customer. In the United States, many

enterprises use the social-security number of a person (a unique number the U.S. government assigns

to every person in the United States) as a customer identifier.

A relationship is an association among several entities. For example, a depositor relationship

associates a customer with each account that she has. The set of all entities of the same type and the set

of all relationships of the same type are termed an entity set and relationship set, respectively.

Therefore it can be summarized as;

ER Model is best used for the conceptual design of database.

ER Model is based on:

 Entities and their attributes

 Relationships among entities

These concepts are explained below.

Entity

An entity in ER Model is real world entity, which has some properties called attributes. Every attribute

is defined by its set of values, called domain.

For example, in a school database, a student is considered as an entity. Student has various attributes

like name, age and class etc.

14 Notes By:- Er. Hitesh Kumar

ER Notation

There is no standard for representing data objects in ER diagrams. Each modeling methodology uses its

own notation. All notational styles represent entities as rectangular boxes and relationships as lines

connecting boxes. Each style uses a special set of symbols to represent the cardinality of a connection.

The notation used in this document is from Martin. The symbols used for the basic ER constructs are:

• Entities are represented by labeled rectangles. The label is the name of the entity. Entity names should be

singular nouns.

• Relationships are represented by a solid line connecting two entities. The name of the relationship is

written above the line. Relationship names should be verbs.

• Attributes, when included, are listed inside the entity rectangle. Attributes which are identifiers are

underlined. Attribute names should be singular nouns.

• Cardinality of many is represented by a line ending in a crow's foot. If the crow's foot is omitted, the

cardinality is one.

• Existence is represented by placing a circle or a perpendicular bar on the line.

Mandatory existence is shown by the bar (looks like a 1) next to the entity for an instance is required.

Optional existence is shown by placing a circle next to the entity that is optional.

Steps In Building the Data Model

While ER model lists and defines the constructs required to build a data model, there is no standard process

for doing so. Some methodologies, such as IDEFIX, specify a bottom-up development process were the

model is built in stages. Typically, the entities and relationships are modeled first, followed by key

attributes, and then the model is finished by adding non-key attributes. Other experts argue that in

practice, using a phased approach is impractical because it requires too many meetings with the end-users.

The sequence used for this document are:

1. Identification of data objects and relationships

2. Drafting the initial ER diagram with entities and relationships

3. Refining the ER diagram

4. Add key attributes to the diagram

5. Adding non-key attributes

6. Diagramming Generalization Hierarchies

7. Validating the model through normalization

15 Notes By:- Er. Hitesh Kumar

8. Adding business and integrity rules to the Model

In practice, model building is not a strict linear process. As noted above, the requirements analysis and

the draft of the initial ER diagram often occur simultaneously. Refining and validating the diagram

may uncover problems or missing information which require more information gathering and analysis

Identifying Data Objects and Relationships

In order to begin constructing the basic model, the modeler must analyze the information

gathered during the requirements analysis for the purpose of:

• Classifying data objects as either entities or attributes

• Identifying and defining relationships between entities

• Naming and defining identified entities, attributes, and relationships

• Documenting this information in the data document

To accomplish these goals the modeler must analyze narratives from users, notes from meeting, policy and

procedure documents, and, if lucky, design documents from the current information system. Although

it is easy to define the basic constructs of the ER model, it is not an easy task to distinguish their roles

in building the data model. What makes an object an entity or attribute? For example, given the

statement "employees work on projects". Should employees be classified as an entity or attribute? Very

often, the correct answer depends upon the requirements of the database. In some cases, employee

would be an entity, in some it would be an attribute.

Attributes

Attributes are data objects that either identify or describe entities. Attributes that identify entities are

called key attributes. Attributes that describe an entity are called non-key attributes. Key attributes will

be discussed in detail in a latter section. The process for identifying attributes is similar except now

you want to look for and extract those names that appear to be descriptive noun phrases.

Relationships

Relationships are associations between entities. Typically, a relationship is indicated by a verb

connecting two or more entities. For example: employees are assigned to projects As relationships are

identified they should be classified in terms of cardinality, optionality, direction, and dependence. As a

result of defining the relationships, some relationships may be dropped and new relationships added.

Cardinality quantifies the relationships between entities by measuring how many instances of one entity

are related to a single instance of another. To determine the cardinality, assume the existence of an

instance of one of the entities. The logical association among entities is called relationship.

16 Notes By:- Er. Hitesh Kumar

Relationships are mapped with entities in various ways. Mapping cardinalities define the number of

association between two entities.

Mapping cardinalities:

one to one

one to many

many to one

many to many

The overall logical structure (schema) of a database can be expressed graphically by an E-R diagram.as

17 Notes By:- Er. Hitesh Kumar

UNIT -4 Relational Model

Relational Model

The relational model uses a collection of tables to represent both data and the relationships

among those data. Each table has multiple columns, and each column has a unique name.

The data is arranged in a relation which is visually represented in a two dimensional table. The

data is inserted into the table in the form of tuples (which are nothing but rows). A tuple is

formed by one or more than one attributes, which are used as basic building blocks in the

formation of various expressions that are used to derive meaningful information. There can be

any number of tuples in the table, but all the tuple contain fixed and same attributes with varying

values. The relational model is implemented in database where a relation is represented by a

table, a tuple is represented by a row, an attribute is represented by a column of the table,

attribute name is the name of the column such as ‗identifier‘, ‗name‘, ‗city‘ etc., attribute value

contains the value for column in the row. Constraints are applied to the table and form the logical

schema. In order to facilitate the selection of a particular row/tuple from the table, the attributes

i.e. column names are used, and to expedite the selection of the rows some fields are defined

uniquely to use them as indexes, this helps in searching the required data as fast as possible. All

the relational algebra operations, such as Select, Intersection, Product, Union, Difference,

Project, Join, Division, Merge etc. can also be performed on the Relational Database Model.

Operations on the Relational Database Model are facilitated with the help of different conditional

expressions, various key attributes, pre-defined constraints etc. Hence in nutshell The most

popular data model in DBMS is Relational Model. It is more scientific model then others. This

model is based on first-order predicate logic and defines table as an n-ary relation.

The main highlights of this model are:

o Data is stored in tables called relations.

o Relations can be normalized.

o In normalized relations, values saved are atomic values.

o Each row in relation contains unique value

o Each column in relation contains values from a same domain

18 Notes By:- Er. Hitesh Kumar

Relational Model Concepts

We shall represent a relation as a table with columns and rows. Each column of the table has a name, or

attribute. Each row is called a tuple.

• Domain: a set of atomic values that an attribute can take

• Attribute: name of a column in a particular table (all data is stored in tables). Each attribute Ai must

have a domain, dom(A).

• Relational Schema: The design of one table, containing the name of the table (i.e. the name of the

relation), and the names of all the columns, or attributes.

Example: STUDENT(Name, SID, Age, GPA)

• Degree of a Relation: the number of attributes in the relation's schema.

• Tuple, t, of R(A1, A2, A3, …, An): an ORDERED set of values, < v1, v2, v3, …, vn>, where each v
i

is a value from dom(A).
i

Properties of relations

 Properties of database relations are:

 Relation name is distinct from all other relations

 Each cell of relation contains exactly one atomic (single) value

 Each attribute has a distinct name

 Values of an attribute are all from the same domain

 Order of attributes has no significance

 Each tuple is distinct; there are no duplicate tuples

 Order of tuples has no significance, theoretically.

19 Notes By:- Er. Hitesh Kumar

Relational keys :

There are two kinds of keys in relations. The first are identifying keys: the primary key is the

main concept, while two other keys – super key and candidate key – are related concepts. The second

kind is the foreign key.

Identity Keys

Super Keys

A super key is a set of attributes whose values can be used to uniquely identify a tuple within a

relation. relation may have more than one super key, but it always has at least one: the set of all

attributes that make up the relation.

Candidate Keys

A candidate key is a super key that is minimal; that is, there is no proper subset that is itself a super

key. A relation may have more than one candidate key, and the different candidate keys may have

a different number of attributes. In other words, you should not interpret 'minimal' to mean the super

key with the fewest attributes.

A candidate key has two properties:

(i) in each tuple of R, the values of K uniquely identify that tuple (uniqueness)

(ii) no proper subset of K has the uniqueness property (irreducibility).

Primary Key

The primary key of a relation is a candidate key especially selected to be the key for the relation. In other

words, it is a choice, and there can be only one candidate key designated to be the primary key.

Relationship between identity keys

The relationship between keys:

Super key ⊇ Candidate Key ⊇ Primary Key

Foreign keys

The attribute(s) within one relation that matches a candidate key of another relation. A relation may have

several foreign keys, associated with different target relations.

Foreign keys allow users to link information in one relation to information in another relation. Without

FKs, a database would be a collection of unrelated tables.

Relational Model Constraints

Integrity Constraints

Each relational schema must satisfy the following four types of constraints.

A. Domain constraints

Each attribute Ai must be an atomic value from dom(Ai) for that attribute.

The attribute, Name in the example is a BAD DESIGN (because sometimes we may want to search

person by only using their last name.

B. Key Constraints

Super key of : A set of attributes, SK, of R such that no two tuples in any valid relational instance,

r(R), will have the same value for SK. Therefore, for any two distinct tuples, t1 and t2 in r(R),

20 Notes By:- Er. Hitesh Kumar

t1[SK] != t2[SK].

Key of R: A minimal superkey. That is, a superkey, K, of R such that the removal of ANY attribute

from K will result in a set of attributes that are not a superkey.

Example CAR(State, LicensePlateNo, VehicleID, Model, Year, Manufacturer)

This schema has two keys:

K1 = { State, LicensePlateNo}

K2 = { VehicleID }

Both K1 and K2 are superkeys.

K3 = { VehicleID, Manufacturer} is a superkey, but not a key (Why?).

If a relation has more than one keys, we can select any one (arbitrarily) to be the primary key. Primary

Key attributes are underlined in the schema:

CAR(State, LicensePlateNo, VehicleID, Model, Year, Manufacturer)

C. Entity Integrity Constraints

The primary key attribute, PK, of any relational schema R in a database cannot have null values in any

tuple. In other words, for each table in a DB, there must be a key; for each key, every row in the table

must have non-null values. This is because PK is used to identify the individual tuples.

Mathematically, t[PK] != NULL for any tuple t € r(R).

D. Referential Integrity Constraints

Referential integrity constraints are used to specify the relationships between two relations in a

database.

21 Notes By:- Er. Hitesh Kumar

Consider a referencing relation, R1, and a referenced relation, R2. Tuples in the

referencing relation, R1, have attributed FK (called foreign key attributes) that

reference,the primary key attributes of the referenced relation, R2. A tuple, t1, in R1

is said to reference a tuple, t2, in R2 if t1[FK] = t2[PK].

A referential integrity constraint can be displayed in a relational database schema as a directed

arc from

the referencing (foreign) key to the referenced (primary) key. Examples are shown in the figure

below:

