# Department of Electronics & Communication Engineering

Audio Video Systems

By: Raj Kumar

#### What is Sound....???

- ✓ Sound is the generalized name given to "acoustic waves"
- ✓ Sound is basically a waveform of energy that is produced by some form of a mechanical vibration
- ✓ The sound waves have frequencies ranging from 16Hz up to 20 kHz but speech range from 300Hz to 3400Hz
- ✓ Sound requires a medium for transmission either through the air, a liquid, or a solid to be "heard"
- ✓ The speed of sound experienced by most of us is about 1000 ft per second or 344 m per second

# Microphone

- ❖Transducer-converts sound pressure variations into electrical signals of the same freq. and phase and of amplitudes in the same proportion as in pressure variations
- Early microphones were invented for communication purposes
- Later modifications were made to design as the microphone was used more in entertainment industry

# Microphone...

Diaphragm—part of microphone which receives the vibration from sound waves

- Thickness and material of diaphragm are changed depending on the sound waves you wish to pick up
- \* How it works?
  - Electrical circuit is used to change these detected vibrations into an electrical signal that "images" the sound with an output voltage or current

# Microphone...

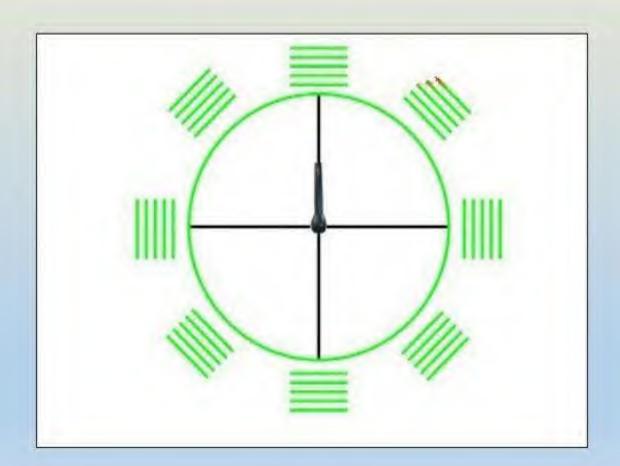
- Quality determined by following characteristics:
  - Sensitivity
  - SNR
  - Frequency Response
  - Non-Linear Distortion
  - Directivity
  - Output Impedance

## Quality...

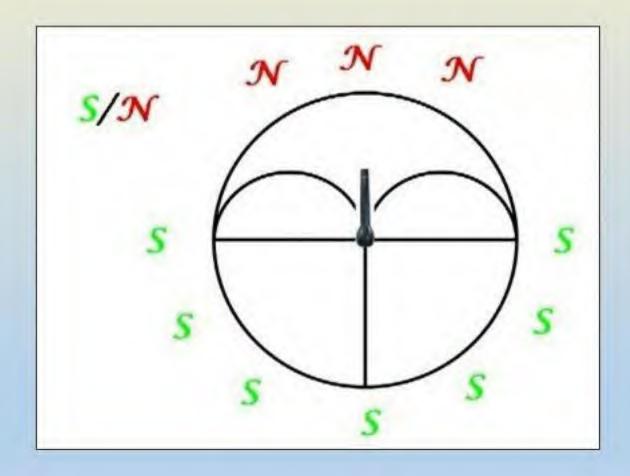
#### Sensitivity:

Output in electrical form in milli Volt (or in dB below 1 volt) for the sound pressure of 1 micor-bar (or 0.1 Pa) at 1000 Hz

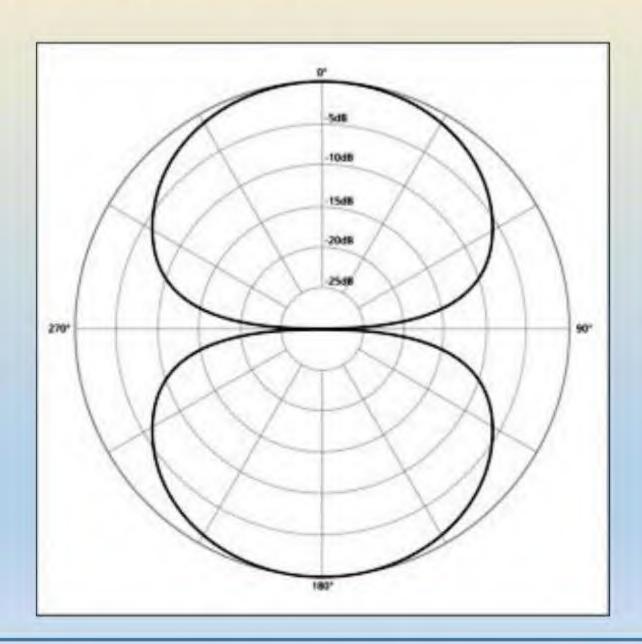
#### □ SNR:


- Noise due to resistance of circuit, built-in transformer etc.
- ratio in dB of output to the output in the absence of sound.

#### ☐ Distortion:


- Non-linear: distorts amplitude produces harmonics other than original input sound should not be more than 5% (for quality microphones) should not be more than 1% (for hi-fi system)
- ☐ Phase distortion: relative path difference due to multiple microphones

# Directivity:


□ Omni-Directional (pressure µP)



# Cardioid or Heart Shaped



# Figure of Eight (ribbon μP)



# **Output Impedance:**

- Impedance matching is require to deliver maximum power to the preamplifier
- To determine which type of match needed to transfer the power efficiently line and then to the amplifier

If output impedance quite low (e.g. transformer to match line impedance) built-in step up transformer is used to match line impedance

# Requisites of a good µP

- High sensitivity
- High SNR
- Flat freq. response over most of the audible freq. range
- Low distortion
- Correct output impedance
- Required directivity

# **Dynamic or Moving-coil Microphone**

- ➤ It produces an electrical analog output signal which is proportional to the "acoustic" sound wave acting upon its flexible diaphragm
- ➤ Many types are available such as Dynamic Moving-coil, condenser, Piezoelectric Crystal microphones

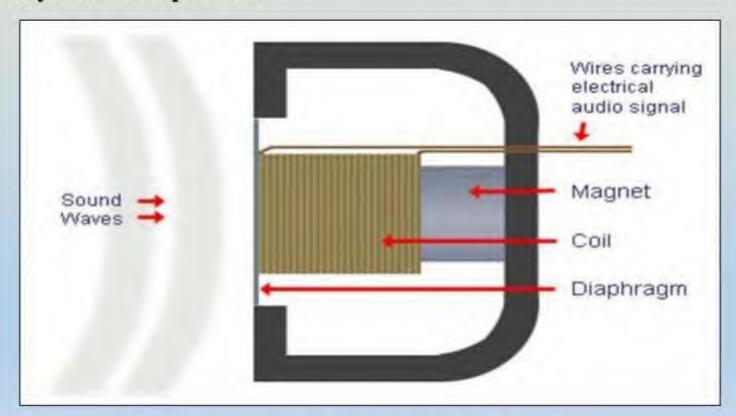



Fig. Dynamic or Moving-coil Microphone

### Dynamic or Moving-coil Microphone...

- Sound wave hits the flexible diaphragm and diaphragm moves back and forth in response to the sound pressure acting upon it
- > Very small coil of thin wire suspended within the magnetic field

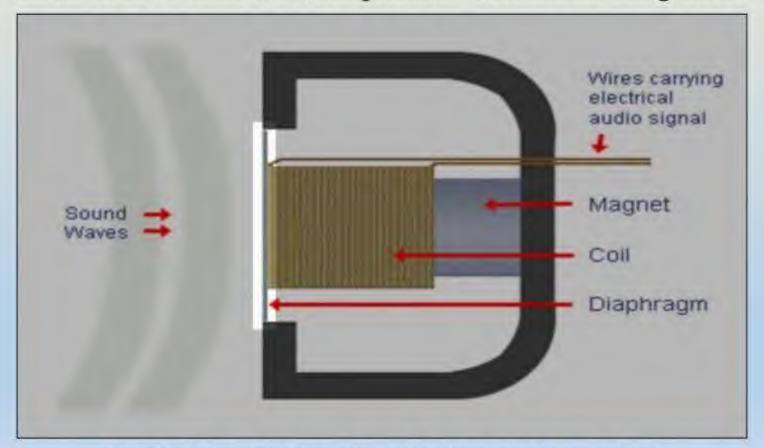



Fig. Working of Dynamic or Moving-coil Microphone

## Dynamic or Moving-coil Microphone...

- Due to diaphragm motion, attached coil move within the magnetic field
- The movement of the coil within the magnetic field causes a voltage to be induced in the coil as defined by Faraday's law

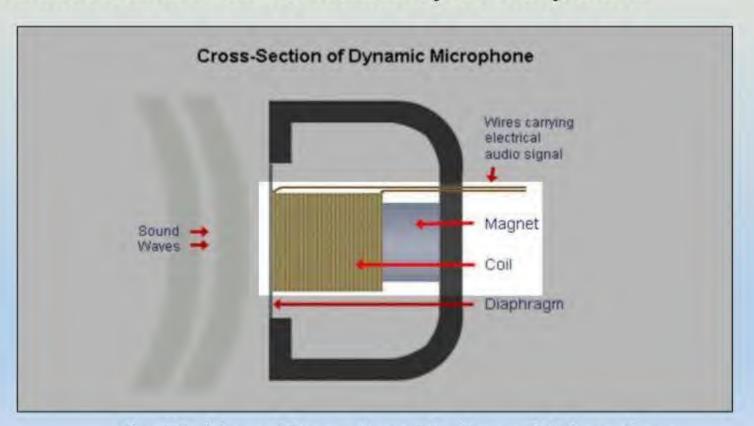
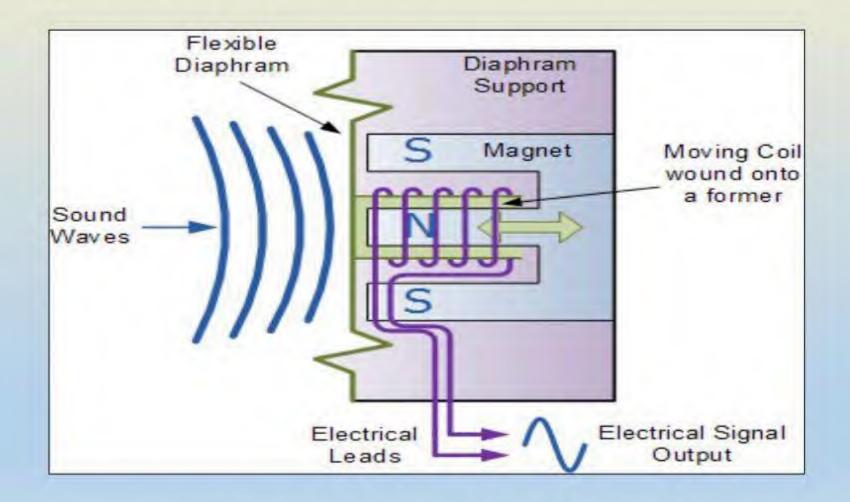
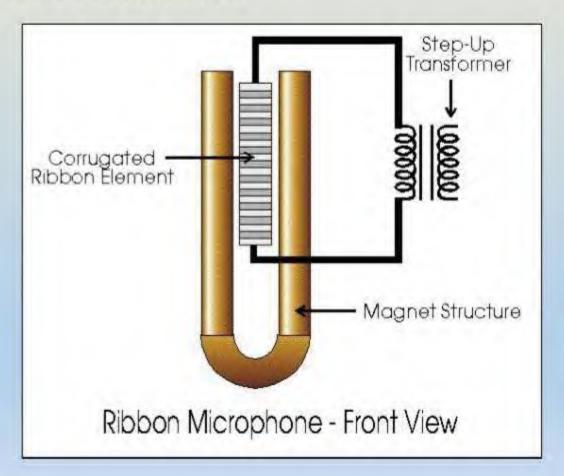



Fig. Working of Dynamic or Moving-coil Microphone

#### Dynamic or Moving-coil Microphone...

The resultant output voltage signal from the coil is proportional to the pressure of the sound wave





Fig. Working of Dynamic or Moving-coil Microphone

#### Characteristics

- Sensitivity: 30 μvolts
- ❖ SN ratio: 30 dB
- ❖ Frequency response: 60Hz to 8000Hz for ±1 dB
- ❖ Distortion: less than 5%
- Directivity: Omnidirectional
- ❖ Output Impedance: quite low about 25 ohm.
  - Need Step up transformer to match a line 200 ohm
- Does not need external Bias
- Less expensive

## Ribbon Microphone

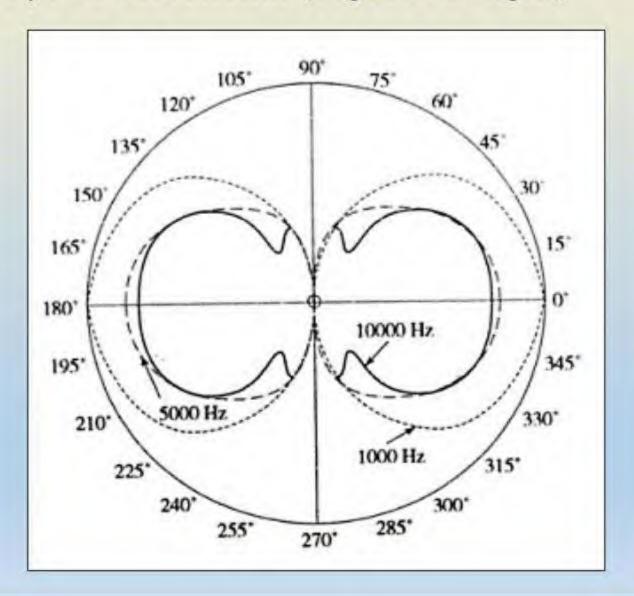
- Diaphragm: Thin piece of metal foil suspended in a magnetic field
- Light aluminium foil corrugated at right angles to its length to provide greater surface area



# Ribbon Microphone...

- Horse shoe magnet with extended pole pieces provides strong magnetic field
- Vibrations in ribbon produce a small voltage which is then stepped up by a transformer
- Ribbon is about 0.2 mg, a few microns thick and about 3 mm wide
- Diaphragm is very easily damaged by wind or loud incoming sounds

# Working...


- Ribbon (an electric conductor) placed in magnetic field, it moves at right angles to magnetic field
  - Change in magnetic flux through ribbon, EMF is induced across ribbon
- EMF is proportional to the rate of change of flux i.e. proportional to sound waves striking the ribbon
- Driving mechanical force is proportional to the difference of the pressures acting on two sides of ribbon
  - It also known as Pressure Gradient or Velocity microphone

#### Characteristics

- Sensitivity: 90 μvolts
- ❖ Frequency response: 20Hz to 12KHz for ±1 dB
- ❖ Output Impedance: quite low about 0.25 ohm
  - ❖ Need Step up transformer to match a line of 200 ohm
- ❖ SN ratio: 50 dB
- Does not need external Bias
- ❖ Distortion: Low 1%

#### Characteristics...

Directivity: Bi-directional (Figure of Eight)



# **Crystal Microphones**

- \*Based on the principle of 'Piezo Electric Effect'
- Difference of potential between the opposite faces of some crystals is produced when these are subjected to mechanical pressure
- \* Crystals: Quartz, Tourmaline, Rochelle salt and ceramic
- \*Rochelle Salt: high piezo electric effect but is susceptible to moisture cannot withstand with high temperature of 50°C
- ❖ Quartz and Tourmaline : low piezo electric effect
- Ceramic: most suitable for crystal microphones as it is not susceptible to moisture and can withstand high temp up to 100° C

# **Construction** (Crystal Microphones)

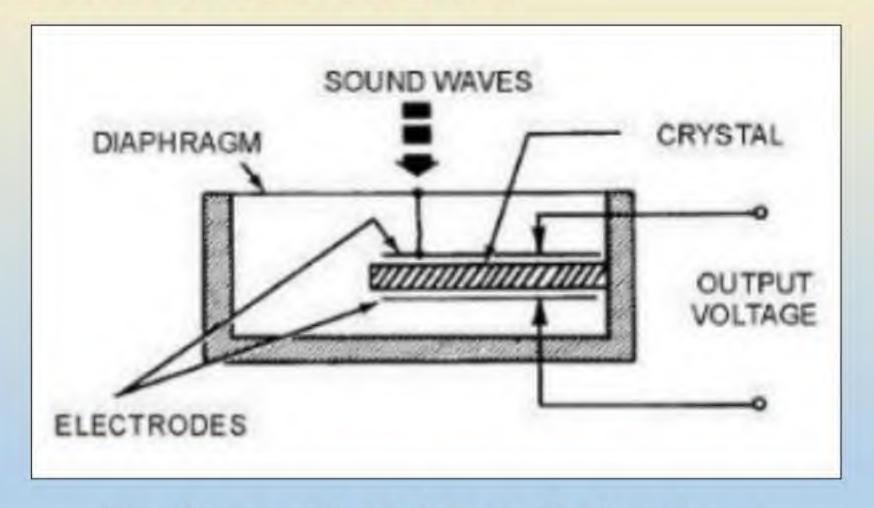


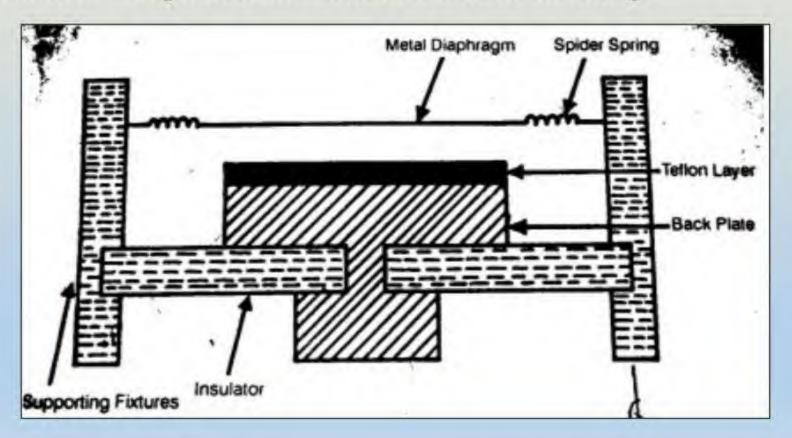

Fig. Construction of Crystal Microphones

# Crystal Microphones...

- Crystal is cut along certain planes to form a slice
- Metallic foil electrodes are attached to two surfaces to carry the potential difference to the output terminals
- Two thin crystal slices suitably cut are placed in an insulating holder with an air space between them. Large number of such elements are combined to increase EMF
- Diaphragm: made of Aluminium, is attached to the crystal surface through a push road
- \* The whole unit is enclosed in a protective case

# Crystal Microphones...

- ❖ Sound wave compression compresses crystal
- Rarefaction converse takes place, crystal is extended and is under tension


- ❖Due to this compression and extension varying potential difference is generated which is proportional to the mechanical pressure applied to the crystal by the sound waves
- Type of Pressure Microphone

#### Characteristics

- ❖ Sensitivity: Good about 50 mV for 0.1 Pa
- ❖ SNR: high About 40 dB
- ❖ Frequency Response: 100-8000 Hz
- ❖ Distortion: Low about 1%
- Directivity: Omni-directional
- ❖ Output Impedance : High about 1 MΩ
- Mixer circuit will load it and cause severe loss of bass hence cannot be used in multi microphone system
- Does not need a bias supply
- Should not be exposed to direct sun light for long time
- Less Expensive

# **Electret Microphone**

- ❖ Capacitor mic costly and unsuitable for field work due to external bias
- ❖ Electret Mic capacitor mic but it has built-in charge



## **Electret Microphone...**

- ❖ Insulating Material Teflon can trap large quantity of fixed charge and can retain it indefinitely
- ❖ Back Plate coated with thin layer of Teflon
- Charged negatively at the time of manufacturing and this charge remains trapped for long period
- Induces positive charge on the diaphragm
- + (+ve) charge on diaphragm, (-ve) charge on Teflon, establish an electric field across the gap of capacitor plates
- \* Due to Sound pressure 'C' changes, Q remains constant
- Same characteristics as capacitor mic except that it does not need external bias and less costly
- Sensitive to temperature and humidity which cause leakage of charge
- Used as tie clip mic for lecturers and as wireless mic in sports meet

### MOVING COIL L.S.

- It is also known as Cone Type L.S. or Direct Radiating Type L.S.
- Works on principle of interaction between magnetic field and current
- A coil placed in uniform magnetic field and audio current passes through it, resulting in force
- Generated force is proportional to the audio current and hence causes vibratory motion in the coil, which makes conical diaphragm to vibrate resulting in sound waves.

# MOVING COIL CONE TYPE L.S.

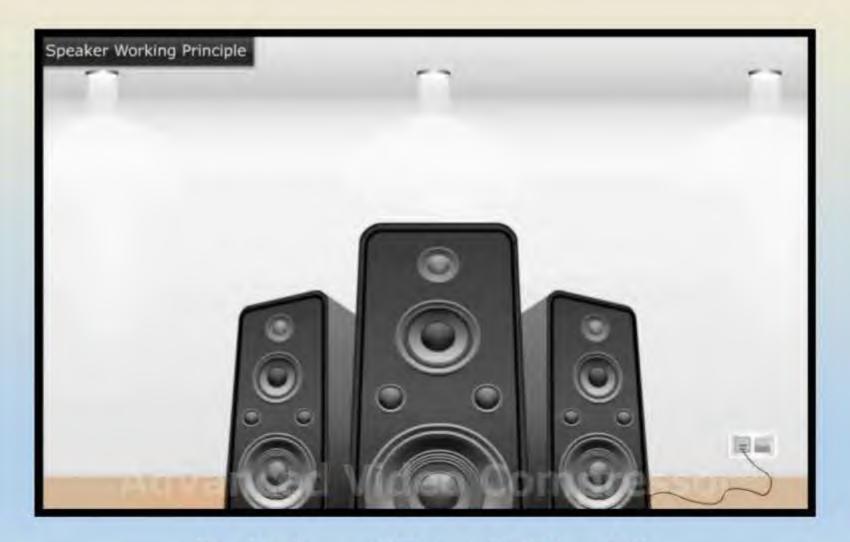



Fig. Working of Moving Coil Type L.S.

#### MOVING COIL CONE TYPE L.S.

Force on coil due to interaction current and magnetic field is given by

$$F = B * L * I * \sin\alpha$$

Where as F = Force in newton

B = Flux density in tesla

L = length of coil wire in m

 $\alpha$  = Angle between coil and field

Normally,  $\alpha = 90^{\circ}$  and hence,

$$F = B * L * I$$

#### MOVING COIL CONE TYPE L.S.

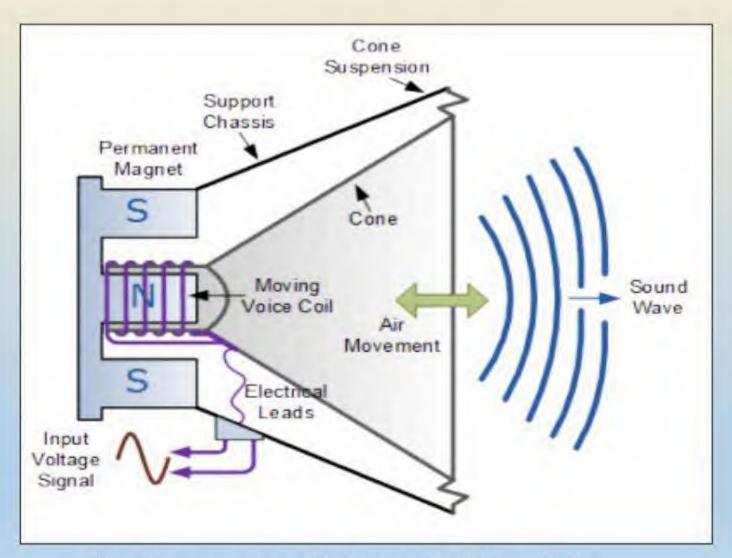



Fig. Construction of Moving Coil Type L.S.

#### CONSTRUCTION

- \*Because of use of permanent magnet it also called "permanent magnet type speaker"
- ❖ Voice coil single layer winding of fine enameled wire wound on cardboard or fiber cylinder
- ❖Paper Cone conical diaphragm made of paper or parchment

#### **CHARACTERISTICS**

- ❖ Efficiency: Quite low due to fact that it acts as a direct radiator complete mismatch between the low acoustic load of large volume of air and high mechanical load of coil and cone assembly
- ❖ SNR: 30 dB (approx.)
- ❖ Freq. Resp.: Restricted to mid freq only 200 Hz to 5000 Hz woofer (up to 40 Hz), tweeter (up to 10 kHz)
- ❖ Distortion : Non-linear due to non-uniformity of magnetic field about 10%
- Directivity: Basically Omni-directional less behind baffles and enclosures
- ❖ Impedance and Power: Varies from 2 to 32 ohm about 25 watt

#### ELECTRODYNAMIC L.S.

- To provide very strong magnetic field for high wattage speakers Electro Magnet is used instead of permanent magnet
- Working principle is same as that of permanent magnet type

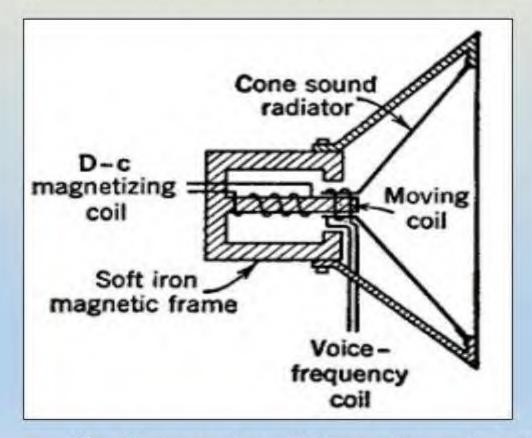



Fig. Construction of Electrodynamic L.S.

#### ELECTRODYNAMIC L.S.

- Advantages
  - \* Higher power
  - Better freq response
- Disadvantages
  - Power supply needed for field coil
  - \* Heavier in weight
  - \* Costlier

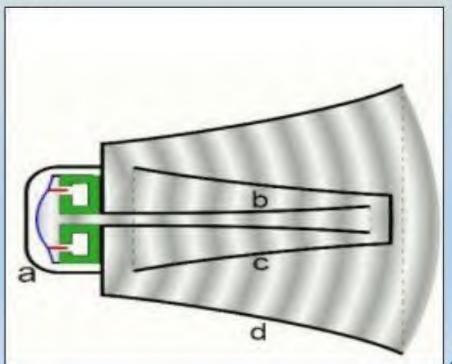
#### HORN TYPE L.S.

- ❖ Instead of radiating acoustic power directly in open space of listeners area, power is first delivered to the air trapped in fixed non-vibrating tapered or flared horn and from here to the air in the listeners area
- Indirect Radiating Loudspeaker
- Horn does acoustically what the cone does mechanically
- \*Horn acts as an acoustic transformer
- Allows better impedance matching
- ❖ Results in increased efficiency 30-50%

### HORN TYPE L.S.

- Air chamber is lined with sound absorbing material
- Cross sectional area increases logarithmically
- Horn acts as a high pass filter
- Cut-off Frequency

$$fc = \frac{CA}{2\pi V}$$


Where as C = velocity of sound
A= Area of cross section of throat
V = Volume of air chamber

In terms of diameter of mouth, lowest frequency can be produced by horn is

f = (170/d), d = diameter of mouth in meter

#### HORN TYPE L.S.

- Low freq. response is improved by wide mouth and high freq. response is improved by small throat
- ❖ To improve low freq. response large size horn unwieldy
- Horn structure is folded back in itself to conserve physical space
- Contains cone loudspeaker with a horn
- \* Horn for high fidelity



#### **CHARACTERISTICS**

- ❖ Efficiency: 30-50%
- ❖ SNR: 40 dB
- ❖ Freq. Response: 30-10KHz
- ❖ Distortion: low, less than 5%
- ❖ Directivity: about 90o differs from low freq to high freq (concentrated in a narrow cone about axis of the horn)
- ❖ Impedance: 16 ohms
- \*Power: about 100 watts

#### **MULTI-WAY SPEAKER SYSTEM**

- Single loudspeaker cannot have flat response for whole audio frequency range
- single speaker cannot produce both, the good solid bass and the smooth crisp treble
- ❖ Solution spectrum is divided into at least 2 and preferably 3 parts
- ❖ Lower audio freq. 16 Hz to 1000 Hz Woofers
- ❖ Higher audio freq. Tweeters
- ❖ Mid audio freq. 500 to 5K Hz Squawker in this case woofer covers up to 500 Hz and tweeter from 5KHz